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Random forests are a popular nonparametric tree ensemble procedure with

broad applications to data analysis. While its widespread popularity stems from

its prediction performance, an equally important feature is that it provides a

fully nonparametric measure of variable importance (VIMP). A current limita-

tion of VIMP, however, is that no systematic method exists for estimating its

variance. As a solution, we propose a subsampling approach that can be used

to estimate the variance of VIMP and for constructing confidence intervals.

The method is general enough that it can be applied to many useful settings,

including regression, classification, and survival problems. Using extensive

simulations, we demonstrate the effectiveness of the subsampling estimator

and in particular find that the delete‐d jackknife variance estimator, a close

cousin, is especially effective under low subsampling rates due to its bias cor-

rection properties. These 2 estimators are highly competitive when compared

with the .164 bootstrap estimator, a modified bootstrap procedure designed to

deal with ties in out‐of‐sample data. Most importantly, subsampling is compu-

tationally fast, thus making it especially attractive for big data settings.
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1 | INTRODUCTION

Random forests (RF)1 are a popular tree‐based learning method with broad applications to machine learning and data
mining. RF was originally designed for regression and classification problems, but over time, the methodology has been
extended to other important settings. For example, random survival forests (RSF)2,3 extends RF to right‐censored
survival and competing risk settings (see also Hothorn et al4 and Zhu and Kosorok5 for other tree ensemble approaches
to survival analysis). Two guiding principles are at the core of RF's success. One is the use of deep trees. Another is
injecting randomization into the tree growing process. First, trees are randomly grown by using a bootstrap sample
of the data. Secondly, random feature selection is used when growing the tree. Thus, rather than splitting a node using
all variables, the node is split using the best candidate from a randomly selected subset of variables. The purpose of this
2‐step randomization is to decorrelate trees, which encourages low variance for the ensemble due to bagging.6 When
combined with the strategy of using deep trees, which is a bias reduction technique, this reduces generalization error
and results in superior performance for the ensemble.
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While RF's popularity stems from its prediction performance, an equally important feature is that it provides a fully
nonparametric measure of variable importance (VIMP).1,2,7-9 Variable importance allows users to identify which
variables play a key role in prediction, thus providing insight into the underlying mechanism for what otherwise might
be considered a black box. We note that the concept of VIMP is not specific to RF and has a long history. One of the
earliest examples was CART,10 which calculated VIMP by summing the reduction in node impurity due to a variable
over all tree nodes. Another approach calculated importance using surrogate splitting (see chapter 5.3 of Breiman
et al10).

Early prototypes of RF software developed by Leo Breiman and his student Adele Cutler provided for various
options for calculating VIMP.11 One procedure used for classification forests was to estimate VIMP using the forest aver-
aged decrease in Gini impurity (somewhat akin to the node impurity approaches of CART). However, while Gini impor-
tance12 saw widespread initial use with RF over time, it has become less popular.8 By far, the most frequently used
measure of importance was another measure provided by the Breiman‐Cutler software called permutation importance
(sometimes also referred to as Breiman‐Cutler importance). Unlike Gini importance that estimates importance using in‐
sample impurity, permutation importance adopts a prediction‐based approach by using prediction error attributable to
the variable. A clever feature is that rather than using cross‐validation, which is computationally expensive for forests,
permutation importance estimates prediction error by making use of out‐of‐bootstrap cases. Recall that each tree is cal-
culated from a bootstrap sample of the original data. The approximately 1−.632=.368 left from the bootstrap represents
out‐of‐sample data, which can be used for estimating prediction performance. These data are called out‐of‐bag (OOB)
and prediction error obtained from it is called OOB error.13 Permutation importance permutes a variable's OOB data
and compares the resulting OOB prediction error to the original OOB prediction error—the motivation being that a
large positive value indicates a variable with predictive importance.
Permutation (Breiman‐Cutler) Importance

In the OOB cases for a tree, randomly permute all values of the jth variable. Put these new covariate values
down the tree and compute a new internal error rate. The amount by which this new error exceeds the
original OOB error is defined as the importance of the jth variable for the tree. Averaging over the forest
yields VIMP.

— Measure 1 (Manual On Setting Up, Using, And Understanding Random Forests V3.1)
We focus on Breiman‐Cutler permutation importance in this manuscript (for simplicity, hereafter simply referred to
as VIMP). One of the tremendous advantages of VIMP is that it removes the arbitrariness of having to select a cutoff
value when determining the effectiveness of a variable. Regardless of the problem, a VIMP of zero always represents
an appropriate cutoff, as it reflects the point at which a variable no longer contributes predictive power to the model.
However, in practice one may observe values close to zero, and the meaning of what constitutes being zero becomes
unclear. One way to resolve this is to calculate the variance of VIMP, but this is challenging due to the complex nature
of RF. Unfortunately, while the empirical properties of VIMP are well documented,14-16 much less is known about
VIMP's theoretical properties outside of a few studies.7,17

Given the difficulties of theoretical analysis, an alternative approach is to approximate the distribution of VIMP
through some form of resampling. This has been the favored approach used for RF regression for assessing variability
of RF predicted values. Methods that have been used include bootstrapping18 for estimating the variance, and the infin-
itesimal jackknife19 and infinite order U‐statistics20 for confidence intervals. These methods, however, only apply to RF
predicted values and not to VIMP, which involves prediction error. This greatly complicates matters and requires a more
general approach.

For this reason, we base our approach on subsampling,21 a general methodology for approximating the distribution
of a complex statistic. Section 3 provides a description of our subsampling procedure for estimating the variance. Nota-
tional framework and a formal definition of VIMP are provided in Section 2. Section 3 begins by introducing a bootstrap
solution to be used as a comparison procedure. Interestingly, we find the bootstrap cannot be applied directly due to ties
that occur in the OOB data. This is precisely due to the fact that VIMP is prediction error based. We propose a solution
to this problem called the .164 bootstrap estimator. The subsampling variance estimator and the delete‐d jackknife var-
iance estimator,22 a close cousin, are described later in Section 3. Sections 4, 5, and 6 consider regression, classification,
and survival settings and extensively evaluate performance of the 2 subsampling methods and the .164 bootstrap
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estimator. We also show how to construct confidence intervals for VIMP using the estimated variance. The results are
very promising for the subsampling methods. Section 7 summarizes our findings and provides practical guidelines for
use of the methodology. Some theoretical results for VIMP are provided in the appendix.
2 | NOTATIONAL FRAMEWORK AND DEFINITION OF VIMP

2.1 | Notation

We assume Y∈Y is the response, and X∈X is the p‐dimensional feature where Y can be continuous, binary, categorical,
or survival, and X can be continuous or discrete. We assume the underlying problem involves a nonparametric regres-
sion framework where the goal is to estimate a functional h(x) of the response given X=x. Estimation is based on the
learning data L ¼ fðX1;Y 1Þ;…; ðXn;YnÞg, where (Xi,Yi) are independently distributed with the same distribution P as
(X,Y).

Examples of h(x) are the following:
1. The conditional mean hðxÞ ¼ E½Y jX ¼ x� in regression.
2. The conditional class probabilities h(x)=(p1(x),…,pK(x)) in a K‐multiclass problem, where pkðxÞ ¼ PfY ¼ kjX ¼ xg.
3. The survival function hðxÞ ¼ PfTo>tjX ¼ xg in survival analysis. Here Y=(T, δ) represents the bivariate response

composed of the observed survival time T ¼ minðTo;CoÞ and censoring indicator δ=1{To≤Co}, where (To,Co) are
the unobserved event and censoring times.
2.2 | Random forest predictor

As in Breiman,1 we define an RF as a collection of randomized tree predictors fhð·;Θm;LÞ;m ¼ 1;…;Mg. Here, hðx;
Θm;LÞ denotes the mth random tree predictor of h(x) and {Θm} are independent identically distributed random
quantities encoding the randomization needed for constructing a tree. Note that Θm is selected prior to growing the tree
and is independent of the learning data, L.

The tree predictors are combined to form the finite forest estimator of h(x),

hðx;Θ1;…;ΘM ;LÞ ¼ 1
M

∑
M

m¼1
hðx;Θm;LÞ: (1)

The infinite forest estimator is obtained by taking the limit as M→∞ and equals

hðx;LÞ ¼ EΘ½hðx;Θ;LÞ�: (2)

2.3 | Loss function

Calculating VIMP assumes some well‐defined notion of prediction error. Therefore, we assume there is an appropriately

prechosen loss function ℓðY ; ĥÞ≥0 used to measure performance of a predictor ĥ in predicting h. Examples include the
following:
1. Squared error loss ℓðY ; ĥÞ ¼ ðY−ĥÞ2 in regression problems.
2. For classification problems, widely used measures of performance are the misclassification error or the Brier score.

For the latter, ℓðY ; ĥÞ ¼ ð1=KÞ∑K
k¼1ð1fY ¼ kg−p̂kÞ2, where p̂k is the estimator for the conditional probability pk.

3. For survival, the weighted Brier score23,24 can be used. Section 6 provides further details.

The choice of ℓ can be very general, and we do not impose any specific conditions on how it must be selected. As
described later in Section 3, the conditions needed for our methodology to hold require only the existence of a limiting
distribution for VIMP. Although such a limit may be satisfied by imposing specific conditions on ℓ, such as requiring the
true function h to yield the minimum value of E½ℓðY ; hÞ�, we do not impose such assumptions so as to retain as general
an approach as possible.
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2.4 | Tree VIMP

LetL∗ðΘmÞ be the mth bootstrap sample, and letL∗∗ðΘmÞ ¼ L∖L∗ðΘmÞ be the corresponding OOB data. Write X=(X(1),
…,X(p)) where X(j) denotes the jth feature coordinate. The permuted value of the jth coordinate of X is denoted by ~X ð jÞ.
Substituting this into the jth coordinate of X yields ~Xð jÞ:

~Xð jÞ ¼ ðX ð1Þ;…;X ð j−1Þ; ~Xð jÞ;Xð jþ1Þ;…;X ðpÞÞ:

Variable importance is calculated by taking the difference in prediction error under the original X to prediction error

under the perturbed ~Xð jÞ over OOB data. More formally, let IðXð jÞ;Θm;LÞ denote the VIMP for X(j) for the mth tree.
It follows that

IðXð jÞ;Θm;LÞ ¼
∑i∈L∗∗ðΘmÞℓðYi; hð~Xð jÞ

i ;Θm;LÞÞ
∑i∈L∗∗ðΘmÞ1

−
∑i∈L∗∗ðΘmÞℓðYi; hðXi;Θm;LÞÞ

∑i∈L∗∗ðΘmÞ1
: (3)

Note that in the first sum, we implicitly assume Θm embeds the additional randomization for permuting OOB data to

define ~Xð jÞ
i . Because this additional randomization only requires knowledge of OOB membership and, therefore, can

be parameterized in terms of Θ, we assume without loss of generality that Θ encodes both the randomization for grow-
ing a tree and for permuting OOB data.

Expression (3) can be written more compactly by noting that the denominator in each sum equals the OOB sample
size. Let N(Θm) be this value. Then

IðXð jÞ;Θm;LÞ ¼ 1
NðΘmÞ ∑

i∈L∗∗ðΘmÞ
½ℓðYi; hð~Xð jÞ

i ;Θm;LÞÞ−ℓðYi; hðXi;Θm;LÞÞ�:

2.5 | Variable importance

Averaging tree VIMP over the forest yields VIMP:

IðX ð jÞ;Θ1;…;ΘM ;LÞ ¼ 1
M

∑
M

m¼1
IðXð jÞ;Θm;LÞ: (4)

An infinite forest estimator for VIMP can be defined analogously by taking the limit as M→∞,

IðX ð jÞ;LÞ ¼ EΘ½IðX ð jÞ;Θ;LÞ�: (5)

It is worth noting that (4) and (5) do not explicitly make use of the forest predictors (1) or (2). This is a unique feature of
permutation VIMP because it is a tree‐based estimator of importance.
3 | SAMPLING APPROACHES FOR ESTIMATING VIMP VARIANCE

3.1 | The .164 bootstrap estimator

The bootstrap is a popular method that can be used for estimating the variance of an estimator. So why not use the boot-
strap to estimate the standard error for VIMP? One problem is that running a bootstrap on a forest is computationally
expensive. Another more serious problem, however, is that a direct application of the bootstrap will not work for VIMP.
This is because RF trees already use bootstrap data and applying the bootstrap creates double‐bootstrap data that affects
the coherence of being OOB.

To explain what goes wrong, let us simplify our previous notation by writing Ið jÞn;M for the finite forest estimator (4).

Let Pn denote the empirical measure for L. The bootstrap estimator of VarðIð jÞn;MÞ is
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Var∗ðIð jÞn;MÞ ¼ VarPnðI∗ð jÞn;MÞ: (6)

To calculate (6), we must draw a sample from Pn. Call this bootstrap sample L∗. Because L∗ represents the learning
data, we must draw a bootstrap sample from L∗ to construct a RF tree. Let L∗ðΘ∗Þ denote this bootstrap sample where
Θ∗ represents the tree growing instructions. This is a double‐bootstrap draw. The problem is that if a specific case in L∗

is duplicated l>1 times there is no guarantee that all l cases appear in the bootstrap draw, L∗ðΘ∗Þ. These remaining
duplicated values are assigned to the OOB data, but these values are not truly OOB, which compromises the coherence
of the OOB data.

Double‐bootstrap data lower the probability of being truly OOB to a value much smaller than .368, which is the
value expected for a true OOB sample. We can work out exactly how much smaller this probability is. Let ni be the num-
ber of occurrences of case i in L∗. Then,

Prfi is truly OOB inL∗ðΘ∗Þg ¼ ∑
n

l¼1
Prfi is truly OOB inL∗ðΘ∗Þjni ¼ lgPr fni ¼ lg: (7)

We have

ðn1;…;nnÞ∼Multinomialðn; ð1=n;…; 1=nÞÞ
ni∼Binomialðn; 1=nÞ≍Poissonð1Þ:

Hence, (7) can be seen to equal

∑
n

l¼1

n−l
n

� �n

Prfni ¼ lg≍∑
n

l¼1

n−l
n

� �n e−11l

l!

� �
¼ e−1∑

n

l¼1
1−

l
n

� �n1
l!
≍e−1∑

n

l¼1

e−l

l!
≍:1635:

Therefore, double‐bootstrap data have an OOB size of .164n.
The above discussion points to a simple solution to the problem, which we call the .164 bootstrap estimator. The .164

estimator is a bootstrap variance estimator but is careful to use only truly OOB data. Let L∗ ¼ fZ1 ¼ ðXi1 ;Yi1Þ;…;
Zn ¼ ðXin ;YinÞg denote the bootstrap sample used for learning, and letL∗ðΘ∗Þ ¼ fZi:i∈Θ∗g be the bootstrap sample used
to grow the tree. The OOB data for the double‐bootstrap data are defined as fðXil ;YilÞ∉L∗ðΘ∗Þg. However, there is
another subtle issue at play regarding duplicates in the OOB data. Even though fðXil ;YilÞ∉L∗ðΘ∗Þg are data points from
L∗ truly excluded from the double‐bootstrap sample and, therefore, technically meet the criteria of being OOB, there is no
guarantee they are all unique. This is because these values originated fromL∗, a bootstrap draw, and, therefore, could very
well be duplicated. To ensure this does not happen, we further process the OOB data to retain only the unique values.

The steps for implementing the .164 estimator can be summarized as follows.
:164 bootstrap estimator for VarðIð jÞn;MÞ

1. Draw a bootstrap sample L∗ ¼ fZ1 ¼ ðXi1 ;Yi1Þ;…;Zn ¼ ðXin ;YinÞg.
2. Let L∗ðΘ∗Þ ¼ fZi:i∈Θ∗g be a bootstrap draw from L∗. Use L∗ðΘ∗Þ to grow a tree predictor.
3. Define OOB data to be the unique values in fðXil ;YilÞ∉L∗ðΘ∗Þg.
4. Calculate the tree VIMP, IðXð jÞ;Θ∗;L∗Þ, using OOB data of step 3.
5. Repeat steps 2 to 4 independently M times. Average the VIMP values to obtain θ̂∗ð jÞn .
6. Repeat the entire procedure K>1 times obtaining θ̂∗ð jÞn;1 ;…; θ̂

∗ð jÞ
n;K . Estimate VarðIð jÞn;MÞ by the bootstrap sample

variance, ð1=KÞ∑K
k¼1ðθ̂∗ð jÞn;k −

1
K
∑K

k′¼1θ̂
∗ð jÞ
n;k′

Þ2.
3.2 | Subsampling and the delete‐d jackknife

A problem with the .164 bootstrap estimator is that its OOB data set is smaller than a typical OOB estimator. Truly OOB
data from a double bootstrap can be less than half the size of OOB data used in a standard VIMP calculation (16.4%
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versus 36.8%). Thus, in a forest of 1000 trees, the .164 estimator uses about 164 trees on average to calculate VIMP for a
case compared with 368 trees used in a standard calculation. This can reduce efficiency of the .164 estimator. Another
problem is computational expense. The .164 estimator requires repeatedly fitting RF to bootstrap data, which becomes
expensive as n increases.

To avoid these problems, we propose a more efficient procedure based on subsampling theory.21 The idea rests on
calculating VIMP over small iid subsets of the data. Because sampling is without replacement, this avoid ties in the
OOB data that creates problems for the bootstrap. Also, because each calculation is fast, the procedure is computation-
ally efficient, especially in big n settings.
3.2.1 | Subsampling theory

We begin by first reviewing some basic theory of subsampling. Let X1,…,Xn be iid random values with common distri-

bution P. Let θ̂n ¼ θ̂ðX1;…;XnÞ be some estimator for θ(P), an unknown real‐valued parameter we wish to estimate.
The bootstrap estimator for the variance of θ̂n is based on the following simple idea. Let Pn ¼ ð1=nÞ∑n

i¼1δXi be the
empirical measure for the data. Let X∗

1 ;…;X
∗
n be a bootstrap sample obtained by independently sampling n points from

Pn. Because Pn converges to P, we should expect the moments of the bootstrap estimator θ̂∗n ¼ θ̂ðX∗
1 ;…;X

∗
nÞ to closely

approximate those of θ̂. In particular, we should expect the bootstrap variance VarPnðθ̂∗nÞ to closely approximate

Varðθ̂nÞ. This is the rationale for the variance estimator (6) described earlier.
Subsampling21 employs the same strategy as the bootstrap but is based on sampling without replacement. For b:=b(n)

such that b/n→0, let Sb be the entire collection of subsets of {1,…,n} of size b. For each s={i1,…,ib}∈Sb, let θ̂n;b;s ¼
θ̂ðXi1 ;…;XibÞ be the estimator evaluated using s. The goal is to estimate the sampling distribution of n1=2ðθ̂n−θðPÞÞ. It
turns out that subsampling provides a consistent estimate of this distribution under fairly mild conditions. LetQn denote
the distribution of n1=2ðθ̂n−θðPÞÞ. Assume Qn converges weakly to a proper limiting distribution Q:

Qn ⇝
d
Q: (8)

Then it follows21 that the distribution function for the statistic n1=2ðθ̂n−θðPÞÞ can be approximated by the subsampling
estimator

Ũn;bðxÞ ¼ 1
Cb

∑
s∈Sb

1fb1=2ðθ̂n;b;s−θ̂nÞ≤xg; (9)

where Cb ¼ n
b

� �
is the cardinality of Sb. More formally, assuming (8) and b/n→0 for b→∞, then Ũn;bðxÞ!p FðxÞ ¼

Q½−∞; x� for each x that is a continuity point of the limiting cumulative distribution function F. The key to this argument
is to recognize that because of (8) and b/n→0, Ũn;b closely approximates

Un;bðxÞ ¼ 1
Cb

∑
s∈Sb

1fb1=2ðθ̂n;b;s−θðPÞÞ≤xg;

which is a U‐statistic25 of order b (see Politis and Romano21 for details).

The ability to approximate the distribution of θ̂n suggests, similar to the bootstrap, that we can approximate
moments of θ̂n with those from the subsampled estimator; in particular, we should be able to approximate the variance.
Unlike the bootstrap, however, subsampled statistics are calculated using a sample size b and not n. Therefore, to esti-
mate the variance of θ̂n, we must apply a scaling factor to correct for sample size. The subsampled estimator for the var-
iance is (see Radulović26 and section 3.3.1 from Politis and Romano21)

υ̂b ¼ b=n
Cb

∑
s∈Sb

θ̂n;b;s−
1
Cb

∑
s′∈Sb

θ̂n;b;s′

 !2

: (10)

The estimator (10) is closely related to the delete‐d jackknife.22 The delete‐d estimator works on subsets of size r=n−d
and is defined as follows:
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υ̂JðdÞ ¼ r=d
Cr

∑
s∈Sr

ðθ̂n;r;s−θ̂nÞ2:

With a little bit or rearrangement, this can be rewritten as follows:

υ̂JðdÞ ¼ r=d
Cr

∑
s∈Sr

θ̂n;r;s−
1
Cr

∑
s′∈Sr

θ̂n;r;s′

 !2

þ r
d

1
Cr

∑
s∈Sr

θ̂n;r;s−θ̂n

 !2

:

Setting d=n−b, we obtain

υ̂JðdÞ ¼ b=ðn−bÞ
Cb

∑
s∈Sb

θ̂n;b;s−
1
Cb

∑
s′∈Sb

θ̂n;b;s′

 !2

þ b
n−b

1
Cb

∑
s∈Sb

θ̂n;b;s−θ̂n

 !2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bias

: (11)

The first term closely approximates (10) since b/n→0, while the second term is a bias estimate of the subsampled estima-
tor. Thus, the delete‐d estimator (11) can be seen to be a bias corrected version of (10). Furthermore, this correction is
always upwards because the bias term is squared and always positive.
3.2.2 | Subsampling and delete‐d jackknife algorithms

We can now describe our subsampling estimator for the variance of VIMP. In the following, we assume b is some inte-
ger much smaller than n such that b/n→0.
b‐subsampling estimator for VarðIð jÞn;MÞ
1. Draw a subsampling set s∈Sb. Let Ls be L restricted to s.
2. Calculate Ið jÞn;MðLsÞ, the finite forest estimator for VIMP using Ls. Let θ̂

ð jÞ
n;b;s denote this value.

3. Repeat K>1 times obtaining θ̂ð jÞn;b;s1
;…; θ̂ð jÞn;b;sK

. Estimate VarðIð jÞn;MÞ by ½b=ðnKÞ�∑K
k¼1ðθ̂ð jÞn;b;sk

−
1
K
∑K

k′¼1θ̂
ð jÞ
n;b;sk′

Þ2.
The delete‐d jackknife estimator is obtained by a slight modification to the above algorithm:
delete‐d jackknife estimator ðd ¼ n−bÞ for VarðIð jÞn;MÞ
1. Using the entire learning set L, calculate the forest VIMP estimator Ið jÞn;MðLÞ. Let θ̂ð jÞn denote this value.
2. Run the b‐subsampling estimator, but replace the estimator in step 3 with fb=½ðn−bÞK�g∑K

k¼1ðθ̂ð jÞn;b;sk
−θ̂ð jÞn Þ2.
4 | RANDOM FOREST REGRESSION, RF ‐R

4.1 | Simulations

In the following sections (Sections 4, 5, and 6), we evaluate the performance of the .164 bootstrap estimator, the b‐sub-
sampling estimator, and the delete‐d jackknife variance estimator. We begin by looking at the regression setting. We
used the following simulations to assess performance.

1. y ¼ 10 sinðπx1x2Þ þ 20ðx3−0:5Þ2 þ 10x4 þ 5x5 þ ε; {xj}∼U(0, 1); ε∼N(0, 1).
2. y ¼ ðx21 þ ½x2x3−ðx2x4Þ−1�2Þ1=2 þ ε; x1∼U(0, 100), x2∼U(40π, 560π), x3∼U(0, 1), x4∼U(1, 11); ε∼N(0, 1252).
3. y ¼ tan−1ð½x2x3−ðx2x4Þ−1�=x1Þ þ ε; x1∼U(0, 100), x2∼U(40π, 560π), x3∼U(0, 1), x4∼U(1, 11); ε∼N(0, .12).
4. y ¼ x1x2 þ x23−x4x7 þ x8x10−x26 þ ε; {xj}∼U(−1, 1); ε∼N(0, .12).
5. y ¼ 1fx1>0g þ x32 þ 1fx4 þ x6−x8−x9>1þ x10g þ expð−x22Þ þ ε; {xj}∼U(−1, 1); ε∼N(0, .12).
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6. y ¼ x21 þ 3x22x3expð−jx4jÞ þ x6−x8 þ ε, {xj}∼U(−1, 1); ε∼N(0, .12).
7. y ¼ 1fx1 þ x34 þ x9 þ sinðx2x8Þ þ ε>0:38g; {xj}∼U(−1, 1); ε∼N(0, .12).
8. y ¼ logðx1 þ x2x3Þ−expðx4x−15 −x6Þ þ ε; {xj}∼U(0.5, 1); ε∼N(0, .12).
9. y ¼ x1x22jx3j1=2 þ ⌊x4−x5x6⌋þ ε; {xj}∼U(−1, 1); ε∼N(0, .12).
10. y ¼ x3ðx1 þ 1Þjx2j−ðx25½jx4j þ jx5j þ jx6j�−1Þ1=2 þ ε; {xj}∼U(−1, 1); ε∼N(0, .12).
11. y ¼ cosðx1−x2Þ þ sin−1ðx1x3Þ−tan−1ðx2−x23Þ þ ε; {xj}∼U(−1, 1); ε∼N(0, .12).
12. y= ε; ε∼N(0, 1).

In all 12 simulations, the dimension of the feature space was set to p=20. This was done by adding variables unre-
lated to y to the design matrix. We call these noise variables. In simulations 1 to 3, noise variables were U(0, 1); for sim-
ulations 4 to 11, noise variables were U(−1, 1); and for simulation 12, noise variables were N(0, 1). All features (strong
and noisy) were simulated independently. Simulations 1 to 3 are the well‐known Friedman 1, 2, 3 simulations.6,27 Sim-
ulations 4 to 11 were inspired from COBRA.28 Simulation 12 is a pure noise model.

The sample size was set at n=250. Subsampling was set at a rate of b=n1/2, which in this case is b=15.8. We can
see that practically speaking, this is a very small sample size and allows subsampled VIMP to be rapidly computed.
The value of d for the delete‐d jackknife was always set to d=n−b. The number of bootstraps was set to 100, and the
number of subsamples was set to 100. Note that this is not a large number of bootstraps or subsampled replicates.
However, they represent values practitioners are likely to use in practice, especially for big data, due to
computational costs.

All RF calculations were implemented using the randomForestSRC R‐package.29 The package runs in OpenMP
parallel processing mode, which allows for parallel processing on user desktops, as well as large scale computing clus-
ters. The package now includes a dedicated function “subsample” which implements the 3 methods studied here. The
subsample function was used for all calculations. All RF calculations used 250 trees. Tree nodesize was set to 5 and p/
3 random feature selection used (these are default settings for regression). Each simulation was repeated independently
250 times. Random forest parameters were kept fixed over simulations. All calculations related to prediction error and

VIMP were based on squared error loss, ℓðY ; ĥÞ ¼ ðY−ĥÞ2.
4.2 | Estimating the true finite standard error and true finite VIMP

Each procedure provides an estimate of the VarðIð jÞn;MÞ. We took the square root of this to obtain an estimate for the stan-

dard error of VIMP, ðVarðIð jÞn;MÞÞ1=2. To assess performance in estimating the standard error, we used the following strat-
egy to approximate the unknown parameter VarðIð jÞn;MÞ. For each simulation model, we drew 1000 independent copies of
the data, and for each of these copies, we calculated the finite forest VIMP, Ið jÞn;M . The same sample size of n=250 was
used, and all forest tuning parameters were kept the same as outlined above. We used the variance of these 1000 values
to estimate VarðIð jÞn;MÞ. We refer to the square root of this value as the true finite standard error. Additionally, we aver-
aged the 1000 values to estimate E½Ið jÞn;M � ¼ E½IðXð jÞ;LÞ�. We call this the true finite VIMP.
4.3 | Results

Performance of methods was assessed by bias and standardized mean‐squared error (SMSE). The bias for a method was
obtained by averaging its estimated standard error over the 250 replications and taking the difference between this and
the true finite standard error. Mean‐squared error was estimated by averaging the squared difference between a
method's estimated value for the standard error and the true finite standard error. Standardized mean‐squared error
was defined by dividing MSE by the true finite standard error. In evaluating these performance values, we realized it
was important to take into account signal strength of a variable. In our simulations, there are noisy variables with no
signal. There are also variables with strong and moderately strong signal. Therefore, to better understand performance
differences, results were stratified by size of a variable's true finite VIMP. In total, there were 240 variables to be dealt
with (12 simulations, each with p=20 variables). These 240 variables were stratified into 6 groups based on 10th, 25th,
50th, 75th, and 90th percentiles of true finite VIMP (standardized by the Y variance to make VIMP comparable across
simulations). Bias and SMSE for the 6 groups are displayed in Figure 1.

All methods exhibit low bias for small VIMP. As VIMP increases, corresponding to stronger variables, bias for the
subsampling estimator increases. Its bias is negative showing that it underestimates variance. The delete‐d estimator



FIGURE 1 Bias and standardized mean‐squared error (SMSE) performance for estimating VIMP standard error from random forest–

regression simulations. In total, there are 240 variables (12 simulations, p=20 variables in each simulation). These 240 variables have been

stratified into 6 groups based on 10th, 25th, 50th, 75th, and 90th percentiles of true finite VIMP. Extreme right boxplots labeled “ALL” display

performance for all 240 variables simultaneously [Colour figure can be viewed at wileyonlinelibrary.com]
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does much better. This is due to the bias correction factor discussed earlier (see (11)), which kicks in when signal
increases. The pattern seen for bias is reflected in the results for SMSE: the delete‐d is similar to the subsampling esti-
mator except for large VIMP where it does better. Overall, the .164 estimator is the best of all 3 methods. On the other
hand, it is hundreds of times slower.

This shows that the delete‐d estimator should be used when bias is an issue. However, bias of the subsampling esti-
mator can be improved by increasing the subsampling rate. Figure 2 reports the results from the same set of simulations
but using an increased sampling rate b=n3/4 (b=62.8). Both estimators improve overall but note the improvement in
bias and SMSE for the subsampling estimator relative to the delete‐d estimator. Also, notice that both estimators now
outperform the .164 bootstrap.
4.4 | Confidence intervals for VIMP

The subsampling distribution (9) discussed in Section 3 can also be used to calculate nonparametric confidence inter-
vals.21 The general idea for constructing a confidence interval for a target parameter θ(P) is as follows. Define the

1−α quantile for the subsampling distribution as cn;bð1−αÞ ¼ inffx:~Un;bðxÞ≥1−αg. Similarly, define the 1−α quantile
for the limiting distribution Q of n1=2ðθ̂n−θðPÞÞ as cð1−αÞ ¼ infft:FðxÞ ¼ Q½−∞; x�≥1−αg. Then, assuming (8) and
b/n→0, the interval
FIGURE 2 Results from random forest–regression simulations but with increased subsampling rate b=n3/4. Notice the improvement in

bias and standardized mean‐squared error (SMSE) for the subsampling estimator [Colour figure can be viewed at wileyonlinelibrary.com]
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½θ̂n−n−1=2cn;bð1−αÞ;∞Þ (12)

contains θ(P) with asymptotic probability 1−α if c(1−α) is a continuity point of F.
While (12) can be used to calculate a nonparametric confidence interval for VIMP, we have found that a more stable

solution can be obtained if we are willing to strengthen our asssumptions to include asympotic normality. Let θ̂ð jÞn ¼ Ið jÞn;M

denote the finite forest estimator for VIMP. We call the limit of θ̂ð jÞn as n, M→∞ the true VIMP and denote this
value by θð jÞ0 ,

θð jÞ0 ¼ lim
n;M→∞

θ̂ð jÞn : ¼ lim
n;M→∞

Ið jÞn;M :

Let υ̂ð jÞn be an estimator for VarðIð jÞn;MÞ. Assuming asymptotic normality,

θ̂ð jÞn −θð jÞ0ffiffiffiffiffiffiffi
υ̂ð jÞn

q ⇝
d
Nð0; 1Þ; (13)

an asymptotic 100(1−α)confidence region for θð jÞ0 , the true VIMP, can be defined as

θ̂ð jÞn ±zα=2

ffiffiffiffiffiffiffi
υ̂ð jÞn

q
;

where zα/2 is the 1−α/2‐quantile from a standard normal, Pr{N(0, 1)≤ zα/2}=1−α/2.
4.5 | Justification of normality

To provide justification for assumption (13), we reran our previous simulations 1000 times independently. For each
Monte Carlo replication and each simulation model, we calculated the finite forest VIMP for a variable and centered
it by its mean value from the 1000 simulations and divided this centered value by the standard deviation of the 1000
VIMP values. All experimental parameters were held at the same values as before except for the sample size, which
was increased to n=2500. The left‐hand side of Figure 3 displays normal quantile plots for standardized VIMP for each
of the 12 simulation models. On the y‐axis are the quantiles for the standardized VIMP while the x‐axis are correspond-
ing N(0, 1) quantiles. The right‐hand side displays quantile bias defined as the difference between the quantile for stan-
dardized VIMP to the quantile for a standard normal. Values are displayed for 5, 10, 25, 50, 75, 90, 95 percentile values.
The results generally confirm that (13) holds. Deviations from normality occur primarily in the tails, but these are rea-
sonable and expected in finite sample settings. For example, the median bias is about 0.02 for the 95th percentile. Thus,
the standardized VIMP quantile differs from the true standard normal value of 1.645 by only a value of 0.02. Also,
observe that overall mean bias is near zero (far right boxplot).

Coverage probabilities for 90% confidence intervals are provided in Figure 4. The left and right figures correspond to
simulations of Figures 1 and 2, respectively (recall Figure 2 is based on a larger subsampling rate b=n3/4). Confidence
intervals for the subsampling and delete‐d estimators use asymptotic normality. For direct comparison, asymptotic nor-
mal bootstrap confidence intervals are also provided. All procedures tend to produce confidence intervals that are too
large when VIMP is small (reflected by coverage probabilities exceeding the targeted 90% level). This is actually a good
feature as it implies they tend to overestimate confidence intervals for noisy variables, thereby making them less likely
to be selected. For larger VIMP, in the left figure, the subsampling estimator tends to produce intervals that are too
small. As mentioned earlier, this is because it tends to underestimate the variance. The delete‐d estimator performs
much better. However, when the subsampling rate is increased (right figure), the subsampling estimator is generally
superior to the delete‐d estimator. Its overall mean coverage rate is 92, which is much better than the delete‐d and boot-
strap which achieve coverage rates of 97 which are too high.



FIGURE 4 Coverage of variable importance 90% asymptotic normal confidence intervals from random forest–regression simulations. Left‐

and right‐hand side figures based on subsampling rates b=n1/2 and b=n3/4, respectively. Confidence regions for the 240 variables from the 12

simulation experiments have been stratified into 6 groups based on 10th, 25th, 50th, 75th, and 90th percentiles of true finite variable

importance values [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Assessing asymptotic normality of variable importance (VIMP) from random forest–regression simulations. Left‐hand figure

displays normal quantile plots for standardized VIMP for each of the 12 simulations. Right‐hand figure displays bias of VIMP quantiles

compared with standard normal quantiles for all 240 variables from all 12 simulations
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5 | RANDOM FOREST CLASSIFICATION, RF ‐C

5.1 | Simulations

The following simulations were used to study performance of methods in the classification problem.
1. Threenorm simulation using mlbench.threenorm from the mlbench R‐package.30

2. Two class simulation using twoClassSim from the caret R‐package31 with 2 factors, 5 linear, and 3 nonlinear
variables.

3. Same as 2, but with a ρ=.75 exchangeable correlation.
4. Same as 2, but with 15 linear variables.

http://wileyonlinelibrary.com
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5. Same as 2, but with 15 linear variables and a ρ=.75 exchangeable correlation.
6. RF‐R simulation 6 with y discretized into 2 classes based on its median.
7. RF‐R simulation 8 with y discretized into 2 classes based on its median.
8. RF‐R simulation 9 with y discretized into 3 classes based on its 20th and 75th quantiles.
9. RF‐R simulation 10 with y discretized into 3 classes based on its 20th and 75th quantiles.
10. RF‐R simulation 11 with y discretized into 3 classes based on its 20th and 75th quantiles.

In simulation 1, the feature space dimension was p=20. Simulations 2 to 4 added d=10 noise variables (see the caret
package for details). Simulations 6 to 10 added d=10 noise variables from aU [−1,1] distribution. Experimental param-
eters were set as in RF‐R simulations: n=250; b={n1/2,n3/4}; 100 bootstrap samples; and 100 subsample draws. Parame-
ters for randomForestSRC were set as in RF‐R except for random feature selection, which used p1/2 random features
(default setting). The entire procedure was repeated 250 times.
5.2 | Brier score

Error performance was assessed using the normalized Brier score. Let Y∈{1,…,K} be the response. If 0≤p̂k≤1 denotes the
predicted probability that Y equals class k, k=1,…,K, the normalized Brier score is defined as follows:

BS∗ ¼ 100K
K−1

∑
K

k¼1
ð1fY ¼ kg−p̂kÞ2:

Note that the normalizing constant 100K/(K−1) used here is different than the value 1/K typically used for the Brier
score. We multiply the traditional Brier score by 100K2/(K−1) because we have noticed that the value for the Brier score
under random guessing depends on the number of classes, K. If K increases, the Brier score under random guessing con-
verges to 1. The normalizing constant used here resolves this problem and yields a value of 100 for random guessing,
regardless of K. Thus, anything below 100 signifies a classifier that is better than pure guessing. A perfect classifier
has value 0.

Although misclassification error is the commonly used performance measure in classification problems, it cannot be
overstated how much stabler the Brier score is. This stability will naturally lend itself to stabler estimates of VIMP,
which is why we have chosen to use it. As a simple illustration of this, consider Figure 5 that displays the OOB misclas-
sification rate and OOB normalized Brier score for the Wisconsin breast cancer data from the mlbench R‐package.
Observe that misclassification error remains unstable even with M=20,000 trees.
FIGURE 5 Out‐of‐bag misclassification error rate versus out‐of‐bag normalized Brier score for Wisconsin breast cancer data (obtained

from the mlbench R‐package). Note the fluctuations in misclassification error even after 20,000 trees in contrast to the stable behavior of

the Brier score
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5.3 | Results

Figure 6 displays the results from the RF‐C simulations. Values are displayed as in RF‐R. Left‐ and right‐hand side fig-
ures are based on subsampling rates b=n1/2 and b=n3/4. The top and middle figures show bias and standardized MSE for
estimating the standard error. The bottom figures are coverage probabilities for 90% confidence intervals. Variable
importance confidence intervals were calculated using asymptotic normality as in RF‐R (see the appendix for justifica-
tion of normality). The conclusions from Figure 6 are similar to those for RF‐R. The delete‐d jackknife is more accurate
in estimating the standard error for strong variables when the subsampling rate is small, but as b increases, the subsam-
pling estimator improves. Both estimators generally improve with increased b. Note unlike RF‐R, coverage probability
FIGURE 6 Results from random forest‐classification simulations showing performance of subsampling, delete‐d jackknife, and .164

bootstrap. Left‐ and right‐hand side figures are based on subsampling rates b=n1/2 and b=n3/4. Top and middle figures display bias and

standardized mean‐squared error (SMSE) for estimating variable importance (VIMP) standard error. Bottom figure displays coverage for

VIMP 90% asymptotic normal confidence intervals. Results have been stratified into 6 groups based on 10th, 25th, 50th, 75th, and 90th

percentiles of true finite VIMP [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


ISHWARAN AND LU 571
for the delete‐d jackknife is better than the subsampling estimator. This is probably because there are more variables
with moderate signal in these simulations.
6 | RANDOM SURVIVAL FORESTS, RSF

Now, we consider the survival setting. We begin by first defining the survival framework using the notation of Section 2.
Following this, we discuss 2 different methods that can be used for measuring prediction error in survival settings. Fol-
lowing this are illustrative examples.
6.1 | Notation

We assume a traditional right‐censoring framework. The response is Y=(T, δ), where T ¼ minðTo;CoÞ is the observed
survival time and δ=1{To≤Co} is the right‐censoring indicator. Here, (To, Co) denote the unobserved event and censoring
times. Thus, δ=1 denotes an event such as death, while δ=0 denotes a right‐censored case. The target function h is the
conditional survival function hðxÞ ¼ PfTo>tjX ¼ xg, where t is some selected time point.
6.2 | Weighted brier score

Let ĥ be an estimator of h. One method for measuring performance of ĥ is the weighted Brier score,23,24 defined as fol-
lows:

wBSðtÞ ¼ ð1fT>tg−ĥÞ2wðt;Y ;GÞ;

where w(t, Y, G) is the weight defined by

wðt;Y ;GÞ ¼ 1fT≤tgδ
GðT−Þ þ 1fT>tg

GðtÞ ;

and GðtÞ ¼ PfCo>tg is the survival function of the censoring variable Co. Using the notation of Section 2, the loss func-
tion ℓ under the weighted Brier score can be written as follows:

ℓðY ; ĥÞ ¼ ð1fT>tg−ĥÞ2wðt;Y ;GÞ:

This assumes G is a known function, but in practice Gmust be estimated.23,24 Thus, ifĜ is an estimator of G, w(t, Y, G) is
replaced by wðt;Y ;ĜÞ.
6.3 | Concordance index

Harrell's concordance index32 is another measure of prediction performance that can be used in survival settings. The

concordance index estimates the accuracy of the predictor ĥ in ranking 2 individuals in terms of their survival. A value
of 1 represents an estimator that has perfect discrimination, whereas a value of 0.5 indicates performance on par with a
random coin toss. This intuitive interpretation of performance has made Harrell's concordance index very popular, and
for this reason, we will base our analysis on it. Note that because the concordance index is calculated by comparing dis-
cordant pairs to concordant pairs and, therefore, is very complex, it is not possible to express it in terms of the ℓ‐loss
function of Section 2. However, this just means that VIMP based on Harrell's concordance index is not easily described
notationally in terms of a formal loss, but this does not pose any problems to the application of our methodology. Per-
mutation VIMP based on Harrell's concordance index is well defined and can be readily calculated.2
6.4 | Systolic heart failure

For our first illustration, we consider a survival data set of n=2231 cardiovascular patients. All patients suffered from
systolic heart failure and all underwent cardiopulmonary stress testing. The outcome was defined as all cause mor-
tality. Over a mean follow‐up of 5 years, 742 of the patients died. Patient variables included baseline
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characteristics and exercise stress test results (p=39). More detailed information regarding the data can be found in
Hsich et al.33

An RSF analysis was run on the data. A total of 250 survival trees were grown using a nodesize value of 30 with all other
parameters set to default values used by RSF in randomForestSRC software. Performance was measured using the C‐
index defined as one minus the Harrell concordance index.2 The delete‐d jackknife estimator was calculated using 1000
subsampled values using a b=n1/2 subsampling rate (b=47.2). We preferred to use the delete‐d jackknife rather than the
subsampling estimator because of the low subsampling rate. Also, we did not use the .164 estimator because it was too slow.

The 95% asymptotic normal confidence intervals are given in Figure 7. Variable importance values have been mul-
tiplied by 100 for convenient interpretation as percentage. Blood urea nitrogen, exercise time, and peak VO2 have the
largest VIMP with confidence intervals well bounded away from zero. All 3 variables are known to be highly predictive
of heart failure, and these findings are not surprising. More interesting, however, are several variables with moderate
sized VIMP, which have confidence regions bounded away from zero. Some examples are creatinine clearance, sex, left
ventricular ejection fraction, and use of beta‐blockers. The finding for sex is especially interesting because sex is often
under appreciated for predicting heart failure.
6.5 | Survival simulations

Next, we study peformance using simulations. We use the 3 survival simulation models described by Breiman in his
2002 Wald lectures.34 Let h(t,x) be the hazard function for covariate x at time t. Simulations are as follows:

1. hðt; xÞ ¼ expðx1−2x4 þ 2x5Þ.
2. If x1≤.5, hðt; xÞ ¼ expðx2Þ1ft∉½:5; 2:5�g. If x1>.5, hðt; xÞ ¼ expðx3Þ1ft∉½2:5; 4:5�g.
3. hðt; xÞ ¼ ð1þ z2tÞexpðz1 þ z2tÞ, where z1=.5x1 and z2=x4+x5.

In all simulations, covariates were independently sampled from aU [0,1] distribution. Noise variables were added to
increase the dimension to p=10. Simulation 1 corresponds to a Cox model. Simulations 2 and 3 are nonproportional
FIGURE 7 Delete‐d jackknife 95% asymptotic normal confidence intervals from random survival forest analysis of systolic heart failure

data. BUN, blood urea nitrogen; CABG, coronary artery bypass graft; ICD, implantable cardioverter‐defibrillator; LVEF, left ventricular

ejection fraction; PCI, percutaneous coronary intervention [Colour figure can be viewed at wileyonlinelibrary.com]
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hazards. Censoring was simulated independently of time in all simulations. Censoring rates were 19%, 15%, and 29%,
respectively.

RSF was fit using randomForestSRC using the same tuning values as in RF‐C simulations (nodesize: 5, random
feature selection: p1/2) Experimental parameters were kept the same as previous simulations. Experiments were
repeated 250 times. Results are displayed using the same format as RF‐R and RF‐C and are provided in Figure 8. The
results generally mirror our earlier findings: bias for the subsampling estimator improves relative to the delete‐d jack-
knife with increasing subsampling rate.
FIGURE 8 Results from random survival forest simulations showing performance of subsampling, delete‐d jackknife, and .164 bootstrap.

Left‐ and right‐hand side figures are based on subsampling rates b=n1/2 and b=n3/4. Top and middle figures display bias and standardized

mean‐squared error (SMSE) for estimating variable importance (VIMP) standard error. Bottom figure displays coverage for VIMP 90%

asymptotic normal confidence intervals. Results have been stratified into 6 groups based on 10th, 25th, 50th, 75th, and 90th percentiles of true

finite VIMP [Colour figure can be viewed at wileyonlinelibrary.com]
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6.6 | Competing risk simulations

Here, we study performance of the methods in a competing risk setting. For our analysis, we use the competing risk
simulations from Ishwaran et al.3 Simulations were based on a Cox exponential hazards model with 2 competing events.
Covariates had differing effects on the hazards. Models included covariates common to both hazards as well as covar-
iates unique to only one hazard. We considered 3 of the simulations from section 6.1 of Ishwaran et al.3

1. Linear model. All p covariate effects are linear.
2. Quadratic model. A subset of the p covariate effects are quadratic.
3. Interaction model. Same as 1, but interactions between certain p variables were included.

The feature dimension was p=12 for simulations 1 and 2, and p=17 for simulation 3 (ie, 5 interaction terms were
added). Covariates were sampled from both continuous and discrete distributions. Performance was measured using
the time truncated concordance index.3 Without loss of generality, we record performance for variables related to event
1 only. RSF competing risk trees were constructed using log‐rank splitting with weight 1 on event 1 and weight 0 on
event 2 (this ensures VIMP identifies only those variables affecting the event 1 cause). RSF parameters and experimental
parameters were identical to the previous simulations. For brevity, results are given in the appendix in Figure A.2. The
results mirror our previous findings.
7 | DISCUSSION

7.1 | Summary

One widely used tool for peering inside the RF “black box” is VIMP. But analyzing VIMP is difficult because of the com-
plex nature of RF. Given the difficulties of theoretical analysis, our strategy was to approximate the distribution of VIMP
through the use of subsampling, a general methodology for approximating distributions of complex statistics. We
described a general procedure for estimating the variance of VIMP and for constructing confidence intervals.

We compared our subsampling estimator, and also the closely related delete‐d jackknife,22 to the .164 bootstrap esti-
mator, a modified bootstrap procedure designed to address ties in OOB data. Using extensive simulations involving
regression, classification, and survival data, a consistent pattern of performance emerged for the 3 estimators. All pro-
cedures tended to under estimate variance for strong variables and over estimate variance for weak variables. This was
especially problematic for the subsampling estimator in low subsampling rate scenarios. The delete‐d jackknife did
much better in this case due to its bias correction. Both of these methods improved with increasing subsampling rate,
eventually outperforming the .164 bootstrap.
7.2 | Computational speed

Overall, we generally prefer the delete‐d jackknife because of its better peformance under low subsampling rates, which
we feel will be the bulk of applications due to the computational complexity of VIMP. Consider survival with concor-
dance error rates, the most computationally expensive setting for VIMP. The concordance index measures concordance
and discordance over pairs of points, a O(n2) operation. With M trees, the number of computations is O(n2M) for a
method like the .164 bootstrap. On the other hand, employing a subsampling rate of b=n1/2 reduces this to O(nM), a
factor of ntimes smaller. The resulting increase in speed will be of tremendous advantage in big data settings.
7.3 | Practical guidelines

One of the major applications of our methodolgy will be variable selection. Below, we provide some practical guidelines
for this setting:

1. Use asymptotic normal confidence intervals derived from the delete‐d jackknife variance estimator.
2. A good default subsampling rate is b=n1/2. As mentioned, this will substantially reduce computational costs in big n

problems. In small n problems, while this might seem overly aggressive leading to small subsamples, our results
have shown solid performance even when n=250.
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3. The α value for the confidence region should be chosen using typical values such as α=.1 or α=.05. Outside of
extreme settings such as high‐dimensional problems, our experience suggests this should work well.

The above guidelines are only meant to be starting points for the analyst, and obviously, there will be
exceptions to the rules. However, as way of support for these recommendations, we did the following variable
selection experiment. We reran the RF‐R simulations of Section 4. Variables were selected using 100(1−α)%
delete‐d jackknife asymptotic normal confidence intervals. The true positive rate (TPR) and true negative rate
(TNR) was calculated for each simulation and results averaged over 250 independent runs. True positive rate
was defined as the fraction of true signal variables identified. True negative rate was the fraction of noisy signal
variables identified.

Figure 9 displays the averaged TPR and TNR for each of the 12 simulation experiments under levels of significance
α=.25, .1, .01, .001. The top panel was calculated under a subsampling rate b=n1/2, while the bottom panel used b=n3/4.
A similar pattern for TPR and TNR values is generally observed for both sampling rates: TPR decreases with increasing
α; TNR increases with α. For b=n3/4, TNR rates are slightly better; however, for b=n1/2, TPR rates are slightly better.
Thus, if the goal is finding true signal the edge goes to b=n1/2.

Focusing on the top panel corresponding to the recommended n1/2subsampling rate, a striking pattern for TPR is
that while TPR decreases with α, the decline is fairly slow. This is interesting given the wide range of α values from
25% to 0.1%. These values are extreme and unlikely to be used in practice and yet TPR results remain quite robust.
Values for TNR are also fairly robust to α, although TNR values appear relatively too small when α=.25. The value
α=.25 is too extreme and creates overly narrow confidence regions causing noisy variables to be misclassified as signal
variables. Generally, however, values α=.1, .05, .01 perform very well under both TNR and TPR.
FIGURE 9 Results from variable selection experiment using random forest–regression simulations of Section 4. Displayed are the true

positive rate and true negative rate for variables selected using 100(1−α)% delete‐d jackknife confidence regions where α= .25, .1, .01,

.001. Top and bottom figures are based on subsampling rates b=n1/2 and b=n3/4
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7.4 | Theoretical considerations

The key assumption underlying subsampling is the existence of a limiting distribution (8) for the estimator. However, as
discussed earlier, theoretical results for VIMP are difficult to come by and establishing a result like (8) for something as
complicated as permuation importance is not easy. As a token, we would like to offer some partial insight into VIMP for
the regression case (RF‐R), perhaps pointing the way for more work in this area. As shown in the appendix (see The-

orem 1), assuming an additive model hðXÞ ¼ ∑p
j¼1hjðXð jÞ

i Þ, the population mean for VIMP equals

E½IðXð jÞ;Θ;LÞ� ¼ E½ðhjð~X ð jÞÞ−hjðX ð jÞÞÞ2� þ 2σ2ð1−ρjÞ þ oð1Þ;

where ρj is a correlation coefficient and hj is the additive expansion of h attributed to X(j). For noisy variables, hj=0 and
ρj=1; thus, VIMP will converge to zero. For strong variables, hj≠0. Our theory suggests that the value of ρj will be the
same for all strong variables. Therefore, for strong variables, except for some constant, VIMP equals the amount that hj
changes when X(j) is permuted, thus showing that VIMP correctly isolates the effect of X(j) in the model.

The technical assumptions required by Theorem 1 are provided in the appendix; however, there are 2 key conditions
worth briefly mentioning. One is the use of deep trees in which terminal nodes contain exactly one unique value (rep-
licated values due to bootstrapping are allowed). A second condition is that the forest predictor is L2‐consistent for h. As
discussed in the appendix, this latter assumption is reasonable in our setting and has been proven by Scornet et al.35

It is interesting that the above property for VIMP is tied to the consistency of the forest. We believe in general that
properties for VIMP, such as its limiting distribution, will rely on analogous results for the RF predictor. Hopefully in
the future, these results for VIMP will be proven. At least in the case of RF‐R, we know that distributional results exist
for the predictor. Wager19 established asymptotic normality of the infinite forest predictor (assuming one observation
per terminal node). Mentch and Hooker20 established a similar result for the finite forest predictor. See Biau and
Scornet36 for a comprehensive discussion of known theoretical results for RF.
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APPENDIX

Assessing normality for classification, survival, and competing risk

We applied the same strategy as in RF‐R simulations to assess normality of VIMP for RF‐C, RSF, and RSF competing
risk simulations. Specifically, for each setting we ran simulations 1000 times independently. Experimental parameters
were set as before with n=2500. The finite forest VIMP for a variable was centered by its averaged value from the
1000 simulations. This centered value was then divided by the standard deviation of the 1000 VIMP values. Quantile
bias was calculated by taking the difference between the quantile for standardized VIMP to that of a standard normal
quantile. Quantile bias is displayed in Figure A.1 for the 3 families.
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FIGURE A.1 Assessing asymptotic normality of variable importance from RF‐C, RSF, and RSF competing risk simulations. Figure

displays bias of standardized variable importance quantiles compared with standard normal quantiles. Values are displayed for 5, 10, 25,

50, 75, 90, 95 percentile values
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Performance results from competing risk simulations

Competing risk simulations from Ishwaran et al3 were used to assess performance of the subsampling, delete‐d
jackknife, and .164 bootstrap estimators. Performance was measured using the time truncated concordance index.3

Analysis focused on variables affecting cause 1 event. RSF competing risk trees were constructed using log‐rank splitting
with weight 1 on event 1 and weight 0 on event 2. This ensured VIMP identified only those variables affecting event 1.
Results are displayed in Figure A.2.
Some theoretical results for VIMP in RF‐R

Let θ̂ð jÞn ¼ IðX ð jÞ;LÞ be the infinite forest estimator for VIMP (5). We assume the following additive regression model
holds:

Yi ¼ ∑
p

j¼1
hjðXð jÞ

i Þ þ εi; i ¼ 1;…;n; (A1)

where (Xi, εi) are iid with distribution P such that Xi and εi are independent and EðεiÞ ¼ 0, Var(εi) = σ2<∞. Notice (A1)
implies that the target function h has an additive expansion hðXÞ ¼ ∑p

j¼1hjðXð jÞÞ. This is a useful assumption because it
will allow us to isolate the effect of VIMP. Also, there are known consistency results for RF in additive models,35 which
we will use later in establishing our results. Assuming squared error loss, ℓðY ; ĥÞ ¼ ðY−ĥÞ2, we have

θ̂ð jÞn ¼ EΘ
1

NðΘÞ ∑
i∈L∗∗ðΘÞ

½ðYi−hð~Xð jÞ
i ;Θ;LÞÞ2−ðYi−hðXi;Θ;LÞÞ2�

" #
:

We will assume the number of OOB cases N(Θ) is always fixed at Round(ne−1), where Round(·) is the nearest integer
function. Write Nn for N(Θ). Because this is a fixed value,

θ̂ð jÞn ¼ 1
Nn

EΘ ∑
i∈L∗∗ðΘÞ

½ðYi−hð~Xð jÞ
i ;Θ;LÞÞ2−ðYi−hðXi;Θ;LÞÞ2�

" #
:

To study θ̂ð jÞn , we will evaluate its mean θð jÞn;0 ¼ EL½θ̂ð jÞn �. For ease of notation, write hn;i ¼ hðXi;Θ;LÞ, and

~hn;i ¼ hð~Xð jÞ
i ;Θ;LÞ. Likewise, let hn ¼ hðX;Θ;LÞ, and ~hn ¼ hð~Xð jÞ;Θ;LÞ. We have



FIGURE A.2 Results from competing risk simulations showing performance of subsampling, delete‐d jackknife, and .164 bootstrap. Left‐

and right‐hand side figures are based on subsampling rates b=n1/2 and b=n3/4. Top and middle figures display bias and standardized mean‐

squared error (SMSE) for estimating variable importance (VIMP) standard error. Bottom figure displays coverage for VIMP 90% asymptotic

normal confidence intervals. Results have been stratified into 6 groups based on 10th, 25th, 50th, 75th, and 90th percentiles of true finite VIMP

[Colour figure can be viewed at wileyonlinelibrary.com]
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θð jÞn;0 ¼
1
Nn

E ∑
i∈L∗∗ðΘÞ

½ðYi−~hn;iÞ2−ðYi−hn;iÞ2�
" #

¼ E½ðY−~hnÞ2−ðY−hnÞ2�;

where the right‐hand side follows because ðX;Y ; hn; ~hnÞ¼d ðXi;Yi; hn;i; ~hn;iÞ if i is OOB (ie, because the tree does not use
information about (Xi, Yi) in its construction, we can replace (Xi, Yi) with (X, Y)). Now making using of the represen-
tation Y=h(X)+ε, which holds by the assumed regression model (A1), and writing h for h(X) and ~Δn ¼ ~hn−hn,

θð jÞn;0 ¼ E½ðY−~hnÞ2−ðY−hnÞ2� ¼ E½−2ε~Δn þ ~Δ2
n þ 2~Δnðhn−hÞ� ¼ E½~Δ2

n� þ 2E½~Δnðhn−hÞ�; (A2)

where in the last line, we have used EðεÞ ¼ 0 and that ε is independent of f~Δn; hn; hg.

http://wileyonlinelibrary.com
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We can see that (A2) is driven by the 2 terms: ~Δn and hn−h. Define integer values ni:=ni(Θ)≥0 recording the bootstrap
frequency of case i=1,…,n in L∗ðΘÞ (notice that ni=0 implies case i is OOB). By the definition of a RF‐R tree, we have

hn ¼ hðX;Θ;LÞ ¼ ∑
n

i¼1
WiðX;ΘÞYi;

where fWiðX;ΘÞgn1 are the forest weights defined as follows:

WiðX;ΘÞ ¼ ni1fXi∈RðX;ΘÞg
jRðX;ΘÞj ;

where R(X,Θ) is the tree terminal node containingX and |R(X,Θ)| is the cardinality equal to the number of bootstrap cases
in R(X, Θ). Notice that the weights are convex since 0≤Wi(X, Θ)≤1 and

∑
n

i¼1
WiðX;ΘÞ ¼ ∑

n

i¼1

ni1fXi∈RðX;ΘÞg
jRðX;ΘÞj ¼ ∑

n

i¼1

ni1fXi∈RðX;ΘÞg
∑n

i′¼1ni′1fXi′∈RðX;ΘÞg
¼ 1:

Similarly, we have

~hn ¼ hð~Xð jÞ;Θ;LÞ ¼ ∑
n

i¼1
Wið~Xð jÞ;ΘÞYi; whereWið~Xð jÞ;ΘÞ ¼ ni1fXi∈Rð~Xð jÞ;ΘÞg

jRð~Xð jÞ;ΘÞj :

Therefore,

~ΔnðXÞ ¼ hð~Xð jÞ;Θ;LÞ−hðX;Θ;LÞ ¼ ∑
n

i¼1
Wið~Xð jÞ;ΘÞYi−∑

n

i¼1
WiðX;ΘÞYi:

To study ~Δn in more detail, we will assume deep trees containing one unique case per terminal node.
Assumption 1. We assume each terminal node contains exactly one unique value. That is, each terminal
node contains the bootstrap copies of a unique data point.
Assumption 1 results in the following useful simplification. For notational ease, write ~R ¼ Rð~Xð jÞ;ΘÞ and R=R(X, Θ).
Then,

~ΔnðXÞ ¼ 1

j~Rj∑i∈~R

niY i−
1
jRj∑i∈RniY i

¼ 1

j~Rj∑i∈~R

nihðXiÞ− 1
jRj∑i∈RnihðXiÞ þ 1

j~Rj∑i∈~R

niεi−
1
jRj∑i∈Rniεi

¼ hðXið~RÞÞ−hðXiðRÞÞ þ εið~RÞ−εiðRÞ;

where ið~RÞ and i(R) identify the index for the bootstrap case in ~R ¼ Rð~Xð jÞ;ΘÞ and R=R(X, Θ), respectively, (note that

ið~RÞ and i(R) are functions of X and j but this is suppressed for notational simplicity). We can see that the information
in the target function h is captured by the first 2 terms in the last line and, therefore, will be crucial to understanding
VIMP. Notice that if hðXið~RÞÞ≍hð~Xð jÞÞ and h(Xi(R))≍h(X), which is what we would expect asymptotically with a deep
tree; then,

hðXið~RÞÞ−hðXiðRÞÞ≍hð~Xð jÞÞ−hðXÞ ¼ hjð~X ð jÞÞ−hjðXð jÞÞ;

where the right‐hand side follows by our assumption of an additive model (A1). This shows that VIMP for X(j) is
assessed by how much its contribution to the additive expansion, hj, changes when X(j) is permuted. This motivates
the following assumption.
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Assumption 2. Assuming a deep tree with one unique value in a terminal node,

hð~Xð jÞÞ ¼ hðXið~RÞÞ þ ~ζnðXÞ; hðXÞ ¼ hðXiðRÞÞ þ ζnðXÞ;

where Eð~ζ 2nÞ ¼ oð1Þ and Eðζ 2nÞ ¼ oð1Þ.

This deals with the first 2 terms in the expansion of ~ΔnðXÞ. We also need to deal with the remaining term involving

the measurement errors, εið~RÞ−εiðRÞ. For this, we will rely on a fairly mild exchangeability assumption.

Assumption 3. ε ; ε is a finite exchangeable sequence with variance σ2.
ið~RÞ iðRÞ
Finally, a further assumption we will need is consistency of the forest predictor.
2 2
Assumption 4. The forest predictor is L2‐consistent, E½ðhn−hÞ �→0 where E½h �<∞.
Putting all of the above together, we can now state our main result.

Theorem 1. If Assumptions 1, 2, 3, and 4 hold, then,
θð jÞn;0 ¼ E½ðhjð~X ð jÞÞ−hjðXð jÞÞÞ2� þ 2σ2ð1−ρjÞ þ oð1Þ;

where ρj ¼ corrðεið~RÞ; εiðRÞÞ.

Note that the asymptotic limit will be heavily dependent on the strength of the variable. Consider when X(j) is a noisy

variable. Ideally this means the tree is split without ever using X(j). Therefore, if we dropX and ~Xð jÞ down the tree they will
occupy the same terminal node. Hence, ~R ¼ R and εið~RÞ ¼ εiðRÞ and therefore ρj=1. Furthermore, because hj must be zero
for a noisy variable, it follows that θð jÞn;0 ¼ oð1Þ. Thus, the limit is zero for a noisy variable. Obviously, this is much different
than the limit of a strong variable, which must be strictly positive because hj≠0 and ρj<1 for strong variables.

ð jÞ ~2 ~
Proof. By (A2), we have θn;0 ¼ E½Δn� þ 2E½Δnðhn−hÞ�. We start by dealing with the second term,

E½~Δnðhn−hÞ�. By the Cauchy‐Schwartz inequality,

E½~Δnðhn−hÞ�≤E½j~Δnjjhn−hj�≤
ffiffiffiffiffiffiffiffiffiffiffi
E½~Δ2

n�
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðhn−hÞ2�
q

:

By Assumption 4, the right‐hand side converges to zero if E½~Δ2
n� remains bounded. By Assumption 2, and

the assumption of an additive model (A1),

~ΔnðXÞ ¼ hjð~X ð jÞÞ−hjðX ð jÞÞ−~ζnðXÞ þ ζnðXÞ þ εið~RÞ−εiðRÞ:

Assumption 4 implies h (and therefore hj) is square‐integrable. Assumption 3 implies that εið~RÞ; εiðRÞ have
finite second moment and are square‐integrable. Therefore squaring and taking expectations, and using

Eð~ζ 2nÞ ¼ oð1Þ and Eðζ 2nÞ ¼ oð1Þ, deduce that

E½~ΔnðXÞ2� ¼ E½ðhjð~X ð jÞÞ−hjðX ð jÞÞÞ2� þ 2E½ðhjð~Xð jÞÞ−hjðX ð jÞÞÞðεið~RÞ−εiðRÞÞ� þ E½ðεið~RÞ−εiðRÞÞ2� þ oð1Þ:

By exchangeability, E½gðXÞεið~RÞ� ¼ E½gðXÞεiðRÞ� for any function g(X). Hence,

0 ¼ E½ðhjð~X ð jÞÞ−hjðXð jÞÞÞεið~RÞ�−E½ðhjð~Xð jÞÞ−hjðX ð jÞÞÞεiðRÞ� ¼ E½ðhjð~X ð jÞÞ−hjðX ð jÞÞÞðεið~RÞ−εiðRÞÞ�:

Appealing to exchangeability once more, we have

E½ðεið~RÞ−εiðRÞÞ2� ¼ E½ε2ið~RÞ� þ E½ε2iðRÞ�−2E½ðεið~RÞεiðRÞÞ� ¼ 2σ2ð1−ρjÞ;

where ρj ¼ corrðεið~RÞ; εiðRÞÞ. Therefore, we have shown

E½~ΔnðXÞ2� ¼ E½ðhjð~X ð jÞÞ−hjðXð jÞÞÞ2� þ 2σ2ð1−ρjÞ þ oð1Þ;

which verifies boundedness of E½~Δ2
n� and that θð jÞn;0 ¼ E½~Δ2

n� þ oð1Þ.
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The conditions needed to establish Theorem 1 are fairly reasonable. Assumption 2 can be viewed as a type of continuity
condition for h. However, it is also an assertion about the approximating behavior of the forest predictor hn. It asserts that
all features X within a terminal node have h(X) values close to one another, which can be seen as an indirect way of
asserting good local prediction behavior for the tree. Thus, Assumption 2 is very similar to Assumption 4. The latter
assumption of consistency is reasonable for deep trees under an additive model assumption. Scornet et al35 established
L2‐consistency of RF‐R for additive models allowing for the number of terminal nodes to grow at rate of n (see theorem
2 of their paper). For technical reasons, their proof replaced bootstrapping with subsampling and required X to be uni-
formly distributed, but other than this their result can be seen as strong support for our assumptions.


