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Central Message

We replace P values with VIMP, which mea-

sures predictive and discovery effect sizes for

a variable that are valid whether the regression

model is correct or not.

See Editorial Commentary page 1137.
Supplemental material is available online.

Statisticians have discussed for decades the problems asso-
ciated with P values and have diligently tried to provide re-
searchers with simple guidelines for their correct use.
Despite all of this, controversies and frustrations remain.
Scientists, who are often forced to use P values, are now
openly questioning and debating their validity as scientific
tools. ‘‘P values, the ‘gold standard’ of statistical validity,
are not as reliable as many scientists assume,’’ is the leading
assertion of the Nature article, ‘‘Scientific Method: Statisti-
cal Errors.’’1 Consider also the recent action of the journal of
Basic and Applied Social Psychology, which announced it
would no longer publish papers containing P values. In ex-
plaining their decision for this policy,2 the editors stated
that hypothesis significance testing procedures are invalid
and thatP values have become a crutch for scientists dealing
with weak data. Even the American Statistical Association
has weighed in on the topic, recently issuing a formal state-
ment on P values,3 the first time in its history it had ever is-
sued a formal statement on matters of statistical practice.

Part of this frustration stems from the need for the P value
to be something for which it was never designed. Re-
searchers want to make context-specific assertions about
their findings; they especially want a statistic that allows
them to make assertions regarding scientific effect. Because
the P value cannot do this, and because the terminology is
confusing and stifling, this leads to misuse and confusion.
Another problem is correctness of the model under which
the P value is calculated. If model assumptions do not
hold, the P value itself becomes statistically invalid. Re-
searchers rarely test for model correctness, and when they
do, they often use goodness of fit. But goodness-of-fit mea-
sures are notoriously unreliable for assessing model valid-
ity.4 All of this implies that a researcher’s findings, which
1130 The Journal of Thoracic and Cardiovascular Sur
hinge so much on the P value being correct, could be sus-
pect without their even knowing it. This nonrobustness of
the P value is further compounded by other conditions typi-
cally outside of the control of the researcher, such as the
sample size, and collinearity, which have enormous effects
on its efficacy.

In this article, we focus on the use of P values in regres-
sion models and present a new approach to the problem. As
readers are aware, the P value from the coefficient estimate
of a variable is typically used to assess its contribution to the
regression model. We present a different strategy by using a
quantity we call the variable importance (VIMP) index.
Unlike the P value, which assesses a variable in terms of
statistical significance, and thus gives no insight into how
important a variable is to the scientific problem, VIMP
measures the importance of a variable in terms of prediction
error. The prediction error is a quantity that describes how
well a model performs over new data without making any
assumptions regarding the truth of the model. VIMP quan-
tifies how much a variable contributes to the prediction
performance of a model and provides an interpretable
measure of the scientific importance of a variable that is
robust to model assumptions. We call this measure the pre-
dictive effect size. We also discuss a marginal VIMP index,
which measures how much a model would improve when a
specific variable is added to it. We call this the discovery
effect size.
gery c March 2018
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PREDICTION ERROR
Typically, prediction error is estimated using cross-

validation. In cross-validation, the data are split into sepa-
rate parts, with one part being used to fit the model, and
the remaining used to calculate the prediction error. The
procedure is repeated over several distinct splits and values
averaged. Out-of-bag (OOB) estimation is a variation of
cross-validation but possesses certain superior statistical
properties due to its connection to leave-one-out cross-vali-
dation.5-7 We use OOB prediction error to calculate VIMP.

Calculating the OOB prediction error begins with boot-
strap sampling. A bootstrap sample is a sample of the
data obtained by sampling with replacement. On average,
because of replicated values, a bootstrap sample contains
only 63.2% of the original data, which is referred to as
the inbag data. The remaining 37% of the data, which is
out-of-sample, is called the OOB data. The OOB error for
a model is obtained by drawing a bootstrap sample, fitting
the model to the inbag (bootstrapped) data, and then calcu-
lating its prediction error on the OOB data. This procedure
is repeated many times. The OOB prediction error is the
averaged value. More technically, if Errb is the OOB predic-
tion error using the bth bootstrap sample (from a total of B
bootstrap samples) the OOB error is

Erroob ¼ 1

B

XB
b¼1

Errb:

The Central Figure provides an illustration of this
concept.

VIMP Index
The VIMP index for a variable b is obtained by a slight

modification to the aforementioned procedure (for nota-
tional simplicity, we will use b to refer to both the vari-
able and its regression coefficient). After fitting the
model to the inbag data, the regression coefficient for b
is set to zero. The prediction error using the OOB data
is then calculated using the modified regression equation.
The VIMP index is the difference between this new
modified error and the prediction error from the original
(nonmodified) regression model. This value will be posi-
tive if b is predictive because the prediction error for the
modified equation will increase relative to the original
prediction error. Averaging this over the bootstrap sam-
ples yields the VIMP index. More formally, let Errb,b
be the OOB prediction error for b from the modified
regression equation and let Errb be the OOB prediction
error for the nonmodified model. The VIMP index for
b is

Db ¼ 1

B

XB
b¼1

½Errb;b �Errb�:
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As just discussed, a positive value indicates a variable b
with a predictive effect. A formal description of the VIMP
algorithm is provided in the Appendix E1.

RISK FACTORS FOR SYSTOLIC HEART FAILURE
To illustrate VIMP, we consider a survival data set previ-

ously analyzed in Hsich and colleagues.8 The data involve
2231 patients with systolic heart failure who underwent car-
diopulmonary stress testing at the Cleveland Clinic. Of
these 2231 patients, during a mean follow-up of 5 years,
742 died. In total, 39 variables were measured for each pa-
tient, including baseline characteristics and exercise stress
test results. Specific details regarding the data are discussed
in the work of Hsich and colleagues.
We used Cox regression, with all-cause mortality used for

the survival endpoint (as was done in the original analysis).
Prediction error was assessed by 100 times 1 minus C,
where C was taken to be Harrell’s concordance index.
Recall that C calculates the fraction of times a procedure
ranks 2 individuals correctly in terms of their risk over
permissible pairs of individuals. Subtracting C from 1 and
scaling by 100 conveniently converts the concordance index
to a percentage between 0 and 100, with 0% representing a
perfect procedure and 50% representing random guessing.
This means that a VIMP index of 5% indicates a variable
that improves by 5% the ability of the model to rank pa-
tients by their risk. We emphasize once again that because
calculations are based on OOB data, and hence are cross-
validated, this reflects a 5% increase in performance for
new patients.
Table 1 presents the results from the Cox regression anal-

ysis. Included are VIMP indices and other quantities ob-
tained from B ¼ 1000 bootstrapped Cox regression
models. Column bb lists the coefficient estimate for each b

variable, and bbinbag is the averaged coefficient estimate
from the 1000 bootstrapped models. These 2 values agree
closely, which is to be expected if the number of iterations
B is selected suitably large. Table 1 has been sorted in terms
of the VIMP index, Db. Interestingly, ordering by VIMP
does not match ordering by P value. For example, insulin-
treated diabetes has a near-significant P value of 6%; how-
ever, its VIMP of 0.07% is relatively small compared with
other variables. The top variable peak VO2 has a VIMP of
1.9%, which is more than 27 times larger.

MARGINALVIMP
Peak oxygen consumption (VO2), blood urea nitrogen

(BUN), and treadmill exercise time are the top 3 variables
identified by the VIMP index. Following these are an assort-
ment of variables with moderate VIMP: sex, use of beta-
blockers, use of digoxin, serum sodium level, and age of
the patient. Then are variables with small but non-zero
VIMP, starting with patient resting heart rate and terminat-
diovascular Surgery c Volume 155, Number 3 1131
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ing with presence of coronary artery disease. VIMP indices
become zero or negative after this. These latter variables,
with zero or negative VIMP indices, can be viewed as
‘‘noisy’’ variables that degrade model performance. This
can be seen by considering the column labeled as Errstep.
This equals the OOB prediction error for models formed us-
ing variables ordered by VIMP. For example, the third line,
30.80, is the OOB error for the model using top 3 variables.
The fourth line is the OOB error for the top 4 variables, and
so forth. Table 1 shows that Errstep decreases for models
with positive VIMP, but rises once models begin to include
noisy variables with zero or negative VIMP.

The entry Errstep in Table 1 is the motivation for our mar-
ginal VIMP index. Relative to its previous entry, Errstep es-
timates the effect of a variable when added to the current
model. For example, the effect of adding exercise time to
the model with peak VO2 and BUN is the difference be-
tween the second row (model 2), 30.81, and the third row
(model 3), 30.80. The effect of adding exercise time is
therefore 0.01 (30.81 minus 30.80). This is much smaller
than the VIMP index for exercise time, which equals
1.37. These values differ because the stepwise error rate es-
timates the effect of adding treadmill exercise time to the
model with Peak VO2 and BUN. We call this the discovery
effect size of the variable. Marginal VIMP (see entry D

marg
b

in Table 1) is a generalization of this concept. It calculates
the discovery effect of a variable by comparing the predic-
tion error of the model with and without the variable added.
The Appendix E1 presents a formal description of this algo-
rithm. We summarize the difference between marginal
VIMP and the VIMP index as follows:

� VIMP is calculated by setting a variable’s regression co-
efficient to zero

� Marginal VIMP removes a variable and refits the model
with the remaining variables

Table 1 reveals that marginal VIMP is generally much
smaller than the VIMP index. This is to be expected because
of the large number of variables in the model, because as the
number of variables becomes large, it will be difficult for
the addition of a single variable to the model to improve pre-
diction performance. However, Table 1 shows there are a
small collection of variables whose discovery effect are
relatively large compared with their VIMP index. The
most interesting is sex (see row entry ‘‘Male’’), which has
the largest discovery effect among all variables (being
tied with BUN). The explanation for this is that adding
sex to the model supplies new information not contained
in other variables. Marginal VIMP is in some sense a state-
ment about correlation. For example, correlation of exercise
time with peak VO2 is 0.87, whereas correlation of BUN
with peak VO2 is �0.40. This allows BUN to have a high
discovery effect when peak VO2 is included in the model,
while exercise time cannot.
1132 The Journal of Thoracic and Cardiovascular Sur
ROBUSTNESS OF VIMP TO THE SAMPLE SIZE
Here, we demonstrate the robustness of VIMP to sample

size changes. We use the systolic heart failure data as
before, but this time using only a fraction of the data. We
used a random 10%, 25%, 50%, and 75% of the data.
This process was repeated 500 times independently. For
each data set, we saved the P values and VIMP indices
for all variables. Figure E1 displays the logarithm of the P
values from the experiment (large negative values corre-
spond to near zero P values). Figure E2 displays the
VIMP indices.What is most noticeable is that VIMP indices
are informative even in the extremely low sample size
setting of 10%. For example, VIMP interquartile values
(the lower and upper ends of the boxplot) are above zero
for peak VO2, BUN, and treadmill exercise time, showing
that VIMP is able to consistently identify the top 3 variables
even with limited data. In contrast, for the low sample
setting of 10%, no variable had a median log P value below
the threshold of log(0.05), showing that no variable met the
5% level of significance on average. Furthermore, even
with 75% of the data, the upper end of the boxplot for ex-
ercise time is still above the threshold, showing its signifi-
cance is questionable.
MISSPECIFIED MODEL
We used the following simulation (n ¼ 1000) from a

Cox regression model to demonstrate robustness of VIMP
to model misspecification. The first 2 variables are
‘‘prostate-specific antigen (psa)’’ and ‘‘tumor volume’’
and represent variables associated with the survival
outcome. The remaining 3 variables are noise variables
with no relationship to the outcome. These are called X1,
X2, X3. The variable psa has a linear main effect, but tumor
volume has both a linear and nonlinear term. The true
regression coefficient for psa is 0.05, and the coefficient
for the linear term in tumor volume is 0.01. A censoring
rate of approximately 70% was used. The log of the hazard
function used in our simulation is given in the left panel of
Figure 1. Mathematically, our log-hazard function assumes
the following function:

logðhðtÞÞ ¼ a0 þ 0:05 3 psa þ 0:013 tumor volume

þ jðtumor volumeÞ;
where j(x) ¼ 0.04x2 � 0.005x3 is a polynomial function
with quadratic and cubic terms. The right panel of
Figure 1 displays the log-hazard for the misspecified model
that does not include the nonlinear term for tumor volume.

We first fit a Cox regression model to the data using only
linear variables as one might typically do. This model was
bootstrapped B ¼ 1000 values and VIMP and marginal
VIMP calculated. This entire procedure of simulating a
data set, fitting a Cox model and 1000 bootstrapped Cox
models, was repeated M ¼ 1000 times. The results from
gery c March 2018



TABLE 1. Results from analysis of systolic heart failure data

Variable

Cox regression VIMP Marginal VIMP

bb P value bbinbag Db Errstep D
marg
b

Peak VO2 �0.06 .002 �0.06 1.94 32.40 0.25

BUN 0.02 .000 0.02 1.67 30.81 0.37

Exercise time 0.00 .008 0.00 1.37 30.80 0.08

Male 0.47 .000 0.47 0.52 30.01 0.37

beta-blocker �0.23 .006 �0.23 0.30 29.34 0.16

Digoxin 0.36 .000 0.36 0.30 29.00 0.22

Serum sodium �0.02 .071 �0.02 0.20 28.93 0.07

Age 0.01 .022 0.01 0.18 28.99 �0.03

Resting heart rate 0.01 .058 0.01 0.14 28.93 0.04

Angiotensin receptor blocker 0.26 .067 0.27 0.13 28.92 0.02

LVEF �0.01 .079 �0.01 0.11 28.86 0.03

Aspirin �0.21 .018 �0.21 0.11 28.83 0.03

Resting systolic blood pressure 0.00 .158 0.00 0.07 28.83 0.00

Diabetes insulin treated 0.26 .057 0.25 0.07 28.87 �0.02

Previous CABG 0.11 .316 0.12 0.07 28.86 �0.02

Coronary artery disease 0.12 .284 0.12 0.06 28.92 �0.04

Body mass index 0.00 .800 0.00 0.00 28.96 �0.05

Potassium-sparing diuretics �0.14 .134 �0.14 �0.03 28.97 �0.01

Previous MI 0.29 .012 0.30 �0.03 29.02 �0.01

Thiazide diuretics 0.04 .707 0.04 �0.04 29.07 �0.05

Peak respiratory exchange ratio 0.12 .701 0.12 �0.04 29.12 �0.05

Statin �0.12 .183 �0.13 �0.04 29.19 �0.07

Antiarrhythmic 0.04 .700 0.04 �0.04 29.25 �0.06

Diabetes, noninsulin-treated 0.01 .930 0.00 �0.05 29.30 �0.06

Dihydropyridine 0.03 .851 0.03 �0.05 29.35 �0.05

Serum glucose 0.00 .486 0.00 �0.05 29.42 �0.07

Previous PCI �0.06 .557 �0.06 �0.05 29.48 �0.05

ICD 0.04 .676 0.03 �0.05 29.55 �0.07

Anticoagulation �0.01 .933 �0.01 �0.06 29.61 �0.06

Pacemaker �0.02 .851 �0.01 �0.06 29.67 �0.06

Current smoker 0.03 .807 0.03 �0.06 29.74 �0.06

Nitrates �0.04 .623 �0.04 �0.06 29.80 �0.06

Serum hemoglobin 0.00 .923 0.01 �0.06 29.87 �0.07

Black 0.07 .589 0.06 �0.07 29.95 �0.08

Nondihydropyridine �0.30 .510 �0.51 �0.07 30.03 �0.08

Loop diuretics �0.07 .541 �0.08 �0.07 30.09 �0.06

ACE inhibitor 0.10 .371 0.11 �0.09 30.15 �0.06

Vasodilators �0.08 .606 �0.07 �0.09 30.25 �0.09

Creatinine clearance 0.00 .624 0.00 �0.11 30.31 �0.06

VIMP, Variable importance; VO2, oxygen consumption; BUN, blood urea nitrogen; LVEF, left ventricular ejection fraction; CABG, coronary artery bypass grafting;MI, myocar-

dial infarction; PCI, percutaneous coronary intervention; ICD, implantable cardioverter defibrillators; ACE, angiotensin-converting enzyme.
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these 1000 experiments were averaged. These values are
summarized in Table 2. The table shows that the P value
has no difficulty in identifying the strong effect of psa,
which is correctly specified in the model. However, the P
The Journal of Thoracic and Car
value for tumor volume is 0.267, indicating a nonsignificant
effect. The P value tests whether this coefficient is zero,
assuming the model is true, but the problem is that the fitted
model is misspecified. The estimated Cox regression model
diovascular Surgery c Volume 155, Number 3 1133



FIGURE 1. Log-hazard function from Cox simulation example. The left

panel displays the true log-hazard function, which includes the nonlinear

term for tumor volume. The right panel displays the log-hazard function,

assuming linear variables only. psa, Prostate-specific antigen.
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inflates the coefficient for tumor volume in a negative direc-
tion (estimated value of �0.03, but true value is 0.01) in an
attempt to compensate for the nonlinear effect that was
excluded from the model. This leads to the invalid P value.
In contrast, both the VIMP and marginal VIMP values for
tumor volume are positive. Although these values are sub-
stantially smaller than the values for psa, VIMP is still
able to identify a predictive effect size associated with tu-
mor volume. Once again, this is possible because VIMP is
based on prediction error, which does not require the under-
lying model to be correct. Also, notice that all 3 noise vari-
ables are correctly identified as uninformative. All have
negative VIMP values.

Typically, a standard analysis would end after looking at
the P values. However, a researcher with access to the entire
Table 2 might be suspicious of the small positive VIMP of
tumor volume and its negative coefficient value, which is un-
expected from previous experience. This combined with the
high OOB model error (equal to 43%) should alert them to
consider more sophisticated modeling. This is easily done
using standard statistical methods. Here we use B-splines9

to add nonlinearity to tumor volume. This expands the design
matrix for the Cox regression model to include additional
columns for the B-spline expansion of tumor volume.

The results from the B-spline analysis are displayed in
Table 3. As before, the entire procedure was repeated
M ¼ 1000 times, with values averaged. Notice the large
value of VIMP for tumor volume, which shows the effec-
tiveness of the B-splines in identifying the true effect. The
same holds true for the P value, which is now very small
for tumor volume. However, the P value is very sensitive
to the distribution of the data and can easily become unsta-
ble. To demonstrate this, we altered the simulation to
introduce a positive correlation between psa and tumor
volume (correlation of approximately 0.71). This creates
collinearity in the variables which heavily affects the P
value. The right-hand side of Table 3 with the heading
‘‘correlated’’ displays the results from this analysis. The
correlation leads to the very misleading result that
although tumor volume is highly significant, psa is not.
In contrast, VIMP is able to maintain large positive values
for both variables even in the presence of the high
collinearity.

DISCUSSION
In this article, we introduced VIMP as an alternative

approach to P values in regression models. Although
VIMP has not been used in this context before, variable
importance is a fairly old concept used in machine learning.
One of its earliest uses was for variable ranking in Classifi-
cation and Regression Trees (see Chapter 5 of Breiman and
colleagues).10 The idea was later extended to variable selec-
tion in random forest regression and classification
models.4,11 See also Ishwaran and colleagues12 for
1134 The Journal of Thoracic and Cardiovascular Sur
applications to random survival forest models. What we
have done here is to take regression methods with which
all the readership will be familiar, borrow from these con-
cepts used in machine learning, which with readers may
not be familiar, and apply them in an understandable way
to come up with the VIMP index, a new statistic that can
supplant P values.

One of the strengths of VIMP is that it provides an inter-
pretable measure of effect size robust to model misspecifi-
cation. It uses prediction error based on OOB data and
replaces statistical significance with predictive importance.
The VIMP framework is feasible to all kinds of models
including not only parametric models, such as those
considered here, but also nonparametric models such as
those used in machine learning. This latter point, of using
VIMP with machine learning methods, brings up an impor-
tant issue regarding the distinction between robustness of
VIMP and power of the underlying model. VIMP is robust
in the sense that because it is based on prediction error, it
does not require the model to be true to be valid, but this
should not be interpreted to mean VIMP can identify
signal in any setting. To be effective in scenarios in which
data complexity exists (for example, presence of interac-
tions or nonlinear effects, and general violation of para-
metric assumptions), the underlying model must have
power to discern these effects. In very complex settings,
we should turn to machine learning methods over para-
metric models to improve power. This then allows the
VIMP calculated under these more powerful models to
be better able to discern signal.

We discussed 2 types of VIMP measures: the VIMP in-
dex and the marginal VIMP. The scientific application
will dictate which of these is more suitable. VIMP indices
are appropriate in settings in which variables for the model
are already established and the goal is to identify the predic-
tive effect size. For example, if several genetic markers are
already identified as a genetic cause for coronary heart dis-
ease risk, VIMP can provide a rank for these and estimate
the magnitude each marker plays in the prediction for the
gery c March 2018



TABLE 2. Results from analysis of simulated Cox regression data set

bb P value bbinbag Db D
marg
b

psa 0.05 .001 0.05 6.32 6.34

Tumor volume �0.03 .267 �0.03 0.14 0.15

X1 0.00 .490 0.00 �0.25 �0.25

X2 0.00 .486 0.00 �0.25 �0.25

X3 0.00 .493 0.00 �0.27 �0.27

The model is misspecified by failing to include the nonlinear term for tumor volume. The overall OOB model error is 43%. OOB, Out-of-bag; psa, prostate-specific antigen.
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outcome. Marginal VIMP is appropriate when the goal is
new scientific discovery. For instance, if a researcher is pro-
posing to add a new genetic marker for evaluating coronary
heart disease risk, marginal VIMP can yield a discovery ef-
fect size for how much the new proposed marker adds to
previous risk models.

From a statistical perspective, VIMP indices are an OOB
alternative to the regression coefficient P value. An impor-
tant feature is that degrees of freedom and other messy de-
tails required with P values when dealing with complex
modeling are never an issue with VIMP. Marginal VIMP
is an OOB analog to the likelihood-ratio test. In statistics,
likelihood-ratio tests compare the goodness-of-fit of 2
models, one of which (the null model with certain variables
removed) is a special case of the other (the alternative
model with all variables included). Marginal VIMP com-
pares the prediction precision of these two scenarios.

There are some limitations to VIMP. Researchers will
need to be diligent in reporting the measure of prediction
performance used in their VIMP analyses. Because VIMP
interpretation depends implicitly on the performance mea-
sure, these 2 values must go hand in hand. Researchers
will also need to familiarize themselves with performance
measures that have universal meaning and which are
appropriate for VIMP. In survival analysis, the Harrell
concordance index is appropriate. For example, a 0.05
VIMP value for 2 different variables from 2 different sur-
vival datasets is comparable—both imply a 5% improve-
ment in the ability to rank a patient’s risk. In logistic
regression analysis, users can report misclassification
TABLE 3. Results from Cox regression simulation using B-splines to mod

P value Db D

psa .001 4.20

Tumor volume .008 2.27

X1 .490 �0.20 �
X2 .483 �0.20 �
X3 .490 �0.21 �
psa, Prostate-specific antigen.

The Journal of Thoracic and Car
error, which lends itself to a VIMP interpretation of
improved ability to classify patients. However, mean
squared error (MSE), which is a common measure of per-
formance used in linear regression, is not appropriate
because of its lack of scale invariance and interpretation.
Instead, standardized MSE, defined as the MSE divided
by the variance of the outcome, should be used. Standard-
ized MSE can be converted to the percent of variance ex-
plained by a model which has an intuitive and universal
interpretation. Another limitation of VIMP is that it is
more computationally demanding. In place of having to
fit one model, the researcher will be required to fit a thou-
sand or more models. This will take more time, but
computational solutions such as parallel processing can
help tremendously. The Appendix E1 discusses this in
greater depth.
One of the tremendous advantages of VIMP is that it

removes the arbitrariness of having to select a cutoff value.
Regardless of the problem, a VIMP of zero always repre-
sents an appropriate cutoff, as it reflects the point at which
a variable no longer contributes predictive power to the
model. Of course, in practice one may observe VIMP values
close to zero, and the meaning of what constitutes being
‘‘zero’’ may be unclear. However, this poses a challenge
only in the sense that we must assess whether the variable
is truly predictive or not, not whether zero is a reasonable
VIMP cutoff value. To answer the question of whether the
observed VIMP really differs from zero, we must estimate
its standard error. Although not described here, it turns
out that fast and efficient subsampling algorithms are
el nonlinearity in tumor volume

marg
b

Correlated

P value Db D
marg
b

4.23 .135 2.17 1.09

2.31 .006 3.93 4.49

0.20 .484 �0.21 �0.21

0.20 .489 �0.23 �0.23

0.21 .505 �0.25 �0.25

diovascular Surgery c Volume 155, Number 3 1135
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available for accurate estimation of VIMP standard error.
Thus, if the observed VIMP exceeds the zero cutoff value,
up to a tolerance depending on the estimated standard error,
we can be confident that the variable is adding predictive-
ness to the model.
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APPENDIX E1. CALCULATING THE VIMP INDEX
FOR AVARIABLE
The variable importance (VIMP) index for estimating the
predictive effect size for a variable is obtained by a slight
extension to the out-of-bag (OOB) error rate calculation.
For concreteness, call the variable of interest b and let Db

denote its VIMP index. The VIMP index Db is calculated
by averaging the VIMP index for b from each bootstrap
sample b, which we denote by Db,b. This latter value is
calculated as follows. For a given bootstrap sample b,
take the OOB data for b and ‘‘noise it up.’’ Noising the
data is intended to destroy the association between b and
the outcome. Use this altered OOB data to calculate the pre-
diction error for the model. Call the noised-up prediction er-
ror Errb,b. The VIMP index for b for the b bootstrap sample
is

Db;b ¼ Errb;b � Errb:

The prediction error for the noised-up data will increase
if b has a real effect in the model. Hence, comparing this
prediction error to the original prediction error will yield
a positive VIMP indexDb,b if b is predictive. The VIMP in-
dex for b is obtained by averaging these values over the
bootstrap realizations:

Db ¼ 1

B

XB
b¼1

Db;b ¼ 1

B

XB
b¼1

½Errb;b�Errb�:

It follows that a large positive value indicates a variable b
that has a large test-validated effect size (predictive effect
size). Algorithm 1 provides a formal statement of this pro-
cedure. We make several remarks regarding the implemen-
tation of Algorithm 1.

CALCULATING THE MARGINALVIMP
The marginal VIMP is calculated by a simple modifica-

tion to Algorithm 1. In place of noising up a variable b, a
second model is fit to the bootstrap data, but with b

removed. The OOB error for this model is compared with
the OOB error for the full model containing all variables.
Averaging these values over the bootstrap realizations
yields D

marg
b . Algorithm 2 provides a formal description of

the procedure.

ALGORITHM 1. VIMP index for a variable b

1: for b ¼ 1,.,B do

2: Draw a bootstrap sample of the data; fit the model to the bootstrap data.

3: Calculate the prediction error, Errb, using the OOB data.

4: Noise up the OOB data for b; use this to calculate the OOB error,

Errb;b.

5: Calculate the bootstrap VIMP index Db;b ¼ Errb;b � Errb.

6: end for

7: Calculate the VIMP index by averaging: Db ¼ PB
b¼1Db;b=B .

8: The OOB error for the model can also be obtained using

Erroob ¼
PB

b¼1Errb=B

(Continued)

ALGORITHM 1. Continued

1. As stated, the algorithm provides a VIMP index for a given variable b,

but in practice one applies the same procedure for all variables in the

model. The same bootstrap samples are to be used when doing so. This

is required because it ensures that the VIMP index for each variable is

always compared with the same value Errb.

2. Because all calculations are run independently of one another,

Algorithm 1 can be implemented using parallel processing. This

makes the algorithm extremely fast and scalable to big data settings.

The most obvious way to parallelize the algorithm is on the bootstrap

sample. Thus, on a specific computing machine on a cluster, a single

bootstrap sample is drawn, and Errb determined. Steps 4 and 5 are then

applied to each variable in the model for the given bootstrap draw.

Results from different computing machines on the computing cluster

are then averaged as in Steps 7 and 8.

3. Noising up a variable is typically done by permuting its data. This is

called permutation noising up and is used for nonparametric

regression models. In the case of parametric and semiparametric

regression models (such as Cox regression), in place of permutation

noising up, the regression coefficient estimate for b is set to zero.

Setting the coefficient to zero is equivalent to setting the OOB data for

b to zero and is a special feature of parametric models that provides a

more direct and convenient way to noise up the data.

4. As a side effect, the algorithm can also be used to return the OOB error

rate for the model, Erroob (see Step 8). This can be useful for assessing

the effectiveness of the model and identifying poorly constructed

models.

5. Algorithm 1 requires being able to calculate prediction error. The type

of prediction error used will be context specific. For example, in linear

regression, prediction error can be measured using mean squared

error, or standardized mean squared error. In classification problems,

prediction error is typically defined by misclassification. In survival

problems, a common measure of prediction performance is Harrell’s

concordance index. Thus, unlike the P value, the interpretation of the

VIMP index will be context specific.
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ALGORITHM 2. Marginal VIMP index for a variable b

1: for b ¼ 1,.,B do

2: Draw a bootstrap sample of the data; calculate the model OOB

prediction error, Errb.

3: Fit a second model, but without b, and calculate its OOB prediction

error, Errmarg
b;b

4: end for

5: Calculate the marginal VIMP by averaging:

D
marg
b ¼ PB

b¼1½Errmarg
b;b �Errb�=B
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FIGURE E1. Robustness of VIMP to the sample size. Logarithm of P value as a function of fraction of sample size for systolic heart failure data is shown

(large negative values correspond to near zeroP values). Values are calculated with 500 independently subsampled data sets.Horizontal line is log (0.05), the

typical threshold used to identify a significant variable. Red boxplots indicate variables with interquartile values below the P-value cutoff.
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FIGURE E2. Robustness of VIMP to the sample size. Subsampled data are the same as Figure E1, but where VIMP is now reported. Red boxplots indicate

variables with interquartile values above zero. VIMP, Variable importance.
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Central Message

Methods borrowed from machine learning can

be used to identify important variables in ordi-

nary multivariable analyses without use of P

values.

See Article page 1130.
When members of the American Statistical Association’s
board decided to develop a policy statement on P values
and statistical significance, they did so knowing they had
not previously taken positions on specific matters of statisti-
cal practice.1 They recognized that ‘‘misunderstanding or
misuse of statistical inference’’ had reached a point that a
policy statement was necessary: ‘‘In view of the prevalent
misuses of and misconceptions concerning P-values, some
statisticians prefer to supplement or even replace P-values
with other approaches.’’ The common use of P values to
identify risk factors in multivariable models, which Naftel2

called more of an art than science, sprang to mind. Could
one really ‘‘replace P values’’ and actually better answer
research questions? I challenged Hemant Ishwaran, PhD,
one of our Deputy Statistical Editors, to consider how one
might identify ‘‘significant’’ risk factors in commonly used
multivariable models without using P values.

Applying methods borrowed from machine learning, he
andUniversity ofMiami graduate studentMin Lu developed
a novel method to accomplish this. In their article in this
issue of the Journal, Lu and Ishwaran3 introduce two
measures of ‘‘variable importance’’ as a substitute for
P values and illustrate them by reanalyzing heart failure
data using well-known Cox proportional hazards regression.

Themethod ismore than a substitute forP values, however.
Built in is bootstrap resampling, whereby new data sets are
formed and analyzed by sampling the original set with
replacement. This means that some observations are repeated
and others are left out—about a third on average—allowing
statistics to be generated based on how well results are
predicted for the left-out patients. ‘‘Important’’ variables are
those that improve this prediction. I cannot overemphasize
the huge advantage that this provides.We often chide authors
who claim to have ‘‘predictive models’’ but provide no
internal (let alone external) validation to be able to use the
word ‘‘predictor.’’ The Lu-Ishwaran method provides
thousands of cross-validations as a byproduct.

Another advantage is less sensitivity to sample size than
P values. This is important for analyses of genomic data and
large national data sets in which extremely tiny P values
may be produced for nearly every variable, so that it
The Journal of Thoracic and Car
becomes unclear which are the important features. Further,
their method is a gateway into a host of other
machine-learning methods, such as efficient ways to
manage large numbers of variables and ways to illuminate
the shape of relationships of continuous variables to
outcomes without model assumptions.
There are limitations, however. The method is

computationally intensive, but those who already
routinely borrow machine-learning methods to generate
multivariable models are used to this.4 It does not provide
statistics with which we are familiar. Fortunately, Efron
and Hastie5 from Stanford have recently published an
accessible book intended to bridge statistics of the past,
including P values, and those of the computer age.
Can we live without P values? Perhaps not for research

(such as clinical trials) well suited to a method modeled
on English common law (innocent until proven guilty
beyond reasonable doubt). But for variable selection using
common multivariable models, it may well be possible to
live, and live well, without P values!
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