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Abstract 

Background The COVID-19 pandemic has become a serious public health concern for older adults and amplified the 
value of deploying telehealth solutions. The purpose of this study was to investigate telehealth offered by providers 
among U.S. Medicare beneficiaries aged 65 years and older during the COVID-19 pandemic.

Methods This cross-sectional study analyzed Medicare beneficiaries aged 65 years and older using data from the 
Medicare Current Beneficiary Survey, Winter 2021 COVID-19 Supplement ( n = 9, 185 ). We identified variables that 
were associated with telehealth offered by primary care physicians and beneficiaries’ access to the Internet through a 
multivariate classification analysis utilizing Random Forest machine learning techniques.

Findings For study participants interviewed by telephone, 81.06% of primary care providers provided telehealth 
services, and 84.62% of the Medicare beneficiaries had access to the Internet. The survey response rates for each 
outcome were 74.86% and 99.55% respectively. The two outcomes were positively correlated ( χ2

= 268.58, p < .001 ). 
The Our machine learning model predicted the outcomes accurately utilizing 44 variables. Residing area and race/
ethnicity were most informative for predicting telehealth coverage, and Medicare-Medicaid dual eligibility and 
income were most informative for predicting Internet access. Other strong correlates included age, ability to access 
basic needs and certain mental and physical health conditions. Interactions were found among statuses of residing 
area, age, Medicare Advantage and heart conditions that intensified the disparity of outcomes.

Conclusions We found that telehealth offered by providers likely increased during the COVID-19 pandemic for older 
beneficiaries, providing important access to care for certain subgroups. Policymakers must continue to identify effec-
tive means of delivering telehealth services, modernize the framework of regulatory, accreditation and reimburse-
ment, and address disparities in access to telehealth with a particular focus on underserved communities.
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Background
The COVID-19 pandemic has been a catalyst in increas-
ing the utilization of telehealth services. It has trig-
gered the rapid shift from traditional in-person visits to 
a hybrid model of in-person and telebehavioral health 
visits  [1, 2], especially if the physician’s office presents 
logistical barriers caused by the pandemic such as incon-
venient clinic hours  [3, 4]. The use of telehealth pre-
COVID-19 was very limited in Medicare fee-for-service 
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(FFS) and only available to beneficiaries enrolled in 
Medicare Advantage via national telehealth platforms. 
However, during the COVID-19 pandemic, Medicare 
FFS reimbursement for telehealth visits was the same as 
in-person visits. Providers also quickly set up telehealth 
in response to the public health emergency (PHE). These 
changes removed the rural-only geographic restrictions, 
expanded services eligible for telehealth and enabled 
widespread use of telehealth among Medicare FFS ben-
eficiaries during the COVID-19 PHE  [5]. Older adults, 
particularly those with weak immune systems, are most 
at risk for underlying conditions that may lead to more 
severe COVID-19 illness or complications  [6, 7]. When 
older adults tend to delay or forego traditional in-person 
health care, telehealth services should be utilized because 
of their safety in providing healthcare services and miti-
gating the risks of infection  [8, 9]. However, there are 
policy and payment restrictions identifying where ben-
eficiaries could receive these services and which provid-
ers could be paid to deliver them  [10, 11]. As means to 
support vulnerable older patients, exploring the use of 
telehealth is important to foster health system resilience 
and provide policy implications related to extending tel-
ehealth coverage under traditional Medicare.

In previous studies, pre-COVID disparities in the use 
of telehealth were reported to be associated with age, 
race/ethnicity, income, and geography  [12–14]. With 
the emergence of COVID-19, efforts have been made to 
expand telehealth options to eliminate racial, residential 
and age disparities  [15, 16]. There are studies reporting 
that the use of telehealth has been maximized during 
the initial stage of the COVID-19 pandemic [17–19]. For 
instance, the mean number of patients with virtual visits 
per month at Mayo Clinic increased from 3.5 (July 2019 
to February 2020) to 172 (March to December 2020) [11, 
20]. The budding literature on telehealth utilization dur-
ing the pandemic emphasized that patients had an overall 
positive view of and were satisfied with telehealth  [21–
23]. However, no telehealth program can be created over-
night by all primary care physicians (PCP) and specialists 
(SP). In previous studies on telehealth utilization, little 
attention has been paid to Medicare beneficiaries aged 65 
years and older. Along with telemedical innovations and 
vaccine administration [24, 25], understanding the expe-
riences of these Medicare beneficiaries is essential for 
policymakers to assess the capacity to treat patients and 
make diverse contributions to telehealth.

In the present study, the objective was to focus on self-
reported telehealth utilization and access to the Internet 
among Medicare beneficiaries aged 65 years and older 
during the COVID-19 pandemic. Because these two out-
comes could be potentially correlated, we conducted a 
multivariate classification analysis. Independant variables 

included socio-demographic factors, personal experi-
ences with COVID-19, economic and mental effects of 
the pandemic, Non-COVID-19 health status and inter-
view time. There is a high dimension of variables with 
complex relationships, so we decide to use machine 
learning approaches. Nowadays, scientists and research-
ers used the machine learning and deep learning mod-
els in several applications including agriculture  [26, 27], 
environment [28–34], text sentiment analyses [35], cyber 
security [36–38],and medicine [39]. Since there are many 
correlated variables with missing values in our dataset, 
we utilized Random Forest machine learning techniques 
for the multivariate classification analysis [40, 41].

Methods
Data source and variables
We used the survey data from the Medicare Current Ben-
eficiary Survey (MCBS) Winter 2021 COVID-19 Supple-
ment, administered by telephone interview conducted by 
trained and certified NORC at the University of Chicago 
field interviewers from February through April 2021. As 
a continuous, multipurpose survey, the MCBS is spon-
sored by the Centers for Medicare & Medicaid Services 
(CMS) in the U.S. The original MCBS primarily focuses 
on outcomes such as changes in health status, spending 
down to Medicaid eligibility, impacts of the Medicare 
program, changes in satisfaction with care, and the usual 
source of care. With the emergence of COVID-19, CMS 
was uniquely positioned to use the MCBS as a vehicle to 
collect vital information on how the pandemic is impact-
ing the Medicare population, and made the data publicly 
available at the MCBS COVID-19 Supplement Public Use 
File. This is a nationally representative survey of all Medi-
care beneficiaries, and we chose Medicare beneficiaries 
aged 65 years and older as our target population.

We conducted descriptive analyses as an overview of 
patterns of telehealth offerings and access to the Internet 
(see Table S1 for the items in the questionnaire) using 
variables including socio-demographic factors, personal 
experiences with COVID-19, economic and mental 
effects of the pandemic, and non-COVID-19 health sta-
tus. We also conducted a multivariate classification anal-
ysis to detect significant predictors.

Statistical analysis
All analyses adopted sampling weights provided by the 
MCBS to give nationally representative estimates. All 
percentages and proportions were calculated using sur-
vey weights. A weighted chi-squared test was used for 
the descriptive overview of each predictor. Random 
Forest  [40] model was applied for the multivariate clas-
sification analysis, which is a modern machine learning 
technique that has been utilized to select replicable sets 
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of exploratory factors from a large number of predic-
tors  [42–47]. Because this method is completely non-
parametric without any restrictive underlying model 
assumptions, nonlinear and complex interrelationships 
can be robustly accounted for. After fitting the Random 
Forest model, variable importance (VIMP)  [40, 41] and 
partial plots [48, 49] were adopted to identify and depict 
variables that are associated with the outcomes after 
adjusting for all the other variables. We select informa-
tive variables as those with positive VIMP estimates 
whose P values are less than 0.05. The VIMP can be inter-
preted as the increase in the misclassification error when 
the predictor of interest is randomly permutated into a 
noise variable. Negative VIMP values categorize “noisy” 
variables that degrade model accuracy. The VIMP and 
misclassification errors are calculated in a cross-validated 
fashion using the data proportion that is not used for fit-
ting the model (a forest of classification trees is “grown” 
from bootstrap samples of the original dataset, leaving an 
average of 37% of the data not sampled, which is referred 
to as out-of-bag data).

We implemented weighted chi-squared tests and the 
Random Forest model in the open-source R software 
using the weights  [50] and randomForestSRC  [51, 
52] packages respectively. The function wtd.chi.
sq from the weights package was used for conduct-
ing weighted chi-squared tests. From the randomFor-
estSRC package, the function rfsrc was used with 
1000 trees and the function tune and parameters na.
action = “na.impute” and case.wt were used 
for tuning the model, for imputing missing values of 
independent variables [53, 54] and for survey weighting, 
respectively; then the function subsample was used 
for estimating inferences of VIMP with default settings 
using 1000 subsamples  [55]. There are two major tun-
ing parameters, the number of variables to possibly split 
at each node (mtry) and the minimum size of termi-
nal node (nodesize); model performance is evaluated 
from different combinations of mtry and nodesize 
to determine the final optimized forest (see Fig.  S1 for 
details). Maximal subtree analysis was used for detect-
ing interactions between predictors  [56, 57] (see Fig. S2 
for the heatmap). Partial plots were generated by setting 
the partial parameter in the plot.variable func-
tion [58]. The statistical significance level was set at .05.

Results
The MCBS Public Use File contains 11,107 Medicare 
beneficiaries in total, among which 9,185 beneficiar-
ies aged 65 years and older (82.70%, survey-weighted 
85.38%) were included in this study (survey-weighted n = 
49.00 million). For answering whether PCP offered tel-
ehealth appointments, 1,964 and 1 beneficiaries reported 

“don’t know” and “refused”, respectively, with 344 inap-
plicable/missing data see Table S2 for more information 
on the missing values. For answering whether they had 
access to the Internet, 40 and one beneficiaries reported 
“don’t know” and “refused,” respectively. These catego-
ries were inappropriate for implementing the weighted 
chi-squared tests, therefore discarded in the descriptive 
analysis for both outcomes and independent variables. 
The survey response rates for each outcome were 74.86% 
and 99.55% respectively. From the yes and no categories, 
81.06% and 84.62% respondents reported telehealth cov-
erage and Internet access respectively. The two outcomes 
were positively correlated ( χ2

= 268.58, p < .001 ). The 
type of telehealth offered was summarized as “telephone”, 
“video” and “both”, whose survey-weighted percentages 
were 21.31, 7.56 and 71.14, respectively. The association 
between the type of telehealth offered and electronic 
device usage is shown in Fig. 1. Access to the Internet and 
owning electronic devices positively relate to the catego-
ries “video” and “both”.

Descriptive analysis
The main characteristics of the sample are displayed 
in Table  1 with frequency, survey-weighted percentage 
and significant level of test statistics. There are 43 vari-
ables, including ten socio-demographic variables, two 
variables describing personal experiences with COVID-
19, seven variables describing the economic and mental 
effects of the pandemic, and 24 variables recording non-
COVID-19 health status.

Among socio-demographic factors, 7 of 10 were sig-
nificantly associated with both outcomes, including age, 
race/ethnicity, residing area (metro vs non-metro), cen-
sus region, income, use of a language other than English 
at home (shown as non-English in Table 1) and Medicare-
Medicaid dual eligibility. The male group and the group 
without prescription drug coverage (Part D plan) signifi-
cantly tended to have access to the Internet. The status of 
Medicare Advantage (MA) also played a significant role. 
The two variables describing personal experiences with 
COVID-19, which recorded COVID-19 test and COVID-
19 antibody test results, were not significantly associated 
with the outcomes. Among factors describing the eco-
nomic and mental effects of the pandemic, 3 of 7 were 
significantly associated with both outcomes. Beneficiar-
ies who felt more financially secure, more stressed and 
less socially connected were more likely to have access to 
telehealth and the Internet; beneficiaries with access to 
the Internet were those who were able to pay rent/mort-
gage as well as get food and home supplies. Most of the 
24 variables recording non-COVID-19 health status were 
significantly associated with either of the outcomes.
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Multivariate classification analysis
Important variables for predicting both outcomes were 
identified by machine learning using the Random For-
est multivariate classification model, and the results are 
shown in Table 2 and Fig. S2. Only yes and no responses 
of the outcomes were included in the Random Forest 

model ( n = 6848, p = 44 ). All variables in Table  1 were 
added to the classification model with a variable record-
ing interview date added. The Random Forest classifi-
cation model predicted the outcomes accurately: the 
out-of-bag misclassification error is 21.22% for predict-
ing telehealth coverage and 17.60% for Internet acess. 

Fig. 1 Distribution of type of telehealth offered and electronic device usage. The survey-weighted percentage of the “yes” category is listed on 
the top. A The association between type of telehealth and owning a computer. B The association between type of telehealth and owning a 
smartphone. C The association between type of telehealth and owning a tablet. D The association between type of telehealth and Internet access
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Table 1 Descriptive analysis of telehealth coverage and Internet access

Number (Survey-weighted  percentage†)

Coverage of telehealth Access to the Internet

Variable Category Frequency Yes No Yes No Sig‡

Overall Overall 9,185 5398 (81) 1478 (19) 7255 (85) 1889 (15)

Age 65 - 74 3919 (60) 2504 (84) 496 (16) 3452 (90) 457 (10) ***+++
74+ 5266 (40) 2894 (76) 982 (24) 3803 (76) 1432 (24)

Gender Male 4042 (45) 2374 (81) 672 (19) 3304 (86) 725 (14) +++
Female 5143 (55) 3024 (81) 806 (19) 3951 (83) 1164 (17)

Race/ethnicity White non-Hispanic 7085 (78) 4195 (83) 1012 (17) 5958 (89) 1103 (11) ***+++
Black non-Hispanic 723 (8) 389 (72) 175 (28) 428 (67) 286 (33)

Hispanic 932 (8) 559 (74) 197 (26) 526 (65) 400 (35)

Other/Unknown 445 (6) 255 (76) 94 (24) 343 (83) 100 (17)

Metro residence Metro 7163 (81) 4456 (83) 1041 (17) 5777 (86) 1354 (14) ***+++
Non-metro 2020 (19) 940 (71) 437 (29) 1477 (78) 534 (22)

Region Northeast 1650 (18) 1010 (82) 244 (18) 1297 (85) 351 (15) ***+++
Midwest 2017 (22) 1158 (84) 268 (16) 1627 (85) 383 (15)

South 3519 (39) 1914 (76) 712 (24) 2648 (81) 856 (19)

West 1998 (22) 1315 (86) 254 (14) 1683 (90) 298 (10)

Income Less than $25,000 2577 (25) 1315 (72) 579 (28) 1421 (63) 1133 (37) ***+++
$25,000 or more 6251 (75) 3917 (84) 821 (16) 5608 (92) 628 (8)

Non-English Yes 1123 (11) 657 (75) 232 (25) 679 (71) 439 (29) ***+++
No 8055 (89) 4737 (82) 1243 (18) 6571 (86) 1448 (14)

Medicare-Medicaid dual eligibility Full 692 (6) 376 (70) 166 (30) 290 (49) 396 (51) ***+++
Nondual 8062 (90) 4809 (82) 1200 (18) 6729 (88) 1304 (12)

Partial 237 (2) 114 (72) 57 (28) 129 (61) 104 (39)

QMB only 194 (2) 99 (68) 55 (32) 107 (60) 85 (40)

Medicare Advantage (MA) No MA enrollment 5033 (58) 2921 (81) 801 (19) 4135 (87) 875 (13) +++
Partial-year MA 165 (3) 94 (86) 20 (14) 123 (82) 42 (18)

Full-year MA 3983 (38) 2380 (81) 657 (19) 2993 (81) 972 (19)

Part D plan Yes 7345 (77) 4294 (81) 1211 (19) 5701 (83) 1608 (17) +++
No 1836 (23) 1101 (82) 267 (18) 1550 (89) 281 (11)

Positive COVID-19 test Yes 340 (12) 229 (86) 44 (14) 267 (85) 71 (15)

No 2579 (88) 1617 (82) 399 (18) 2120 (87) 450 (13)

No results yet 19 (1) 14 (82) 3 (18) 17 (96) 2 (4)

Positive COVID19 antibody test Yes 58 (20) 39 (87) 9 (13) 51 (94) 7 (6)

No 223 (78) 156 (88) 26 (12) 200 (93) 23 (7)

No results yet 7 (2) 4 (100) 0 (0) 7 (100) 0 (0)

Able to pay rent or mortgage Able 5237 (60) 3153 (82) 836 (18) 4145 (85) 1067 (15) ++
Unable 96 (1) 58 (76) 20 (24) 63 (73) 33 (27)

Not needed 3821 (39) 2174 (80) 615 (20) 3026 (85) 780 (15)

Able to get food Able 8902 (97) 5248 (81) 1422 (19) 7063 (85) 1801 (15) +++
Unable 150 (2) 82 (73) 33 (27) 112 (83) 35 (17)

Not needed 117 (1) 62 (79) 18 (21) 70 (70) 47 (30)

Able to get home supplies Able 8788 (96) 5170 (81) 1409 (19) 6968 (85) 1780 (15) +++
Unable 212 (2) 135 (82) 35 (18) 170 (85) 42 (15)

Not needed 168 (2) 87 (76) 29 (24) 107 (74) 60 (26)

Feel financially secure More secure 442 (6) 291 (86) 53 (14) 388 (91) 50 (9) *+++
Less secure 836 (11) 484 (79) 150 (21) 638 (81) 193 (19)

About the same 6936 (84) 4072 (82) 1074 (18) 5677 (87) 1230 (13)
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Table 1 (continued)

Number (Survey-weighted  percentage†)

Coverage of telehealth Access to the Internet

Variable Category Frequency Yes No Yes No Sig‡

Feel stressed More stressed 2809 (37) 1800 (84) 378 (16) 2380 (89) 414 (11) ***+++

Less stressed 353 (5) 212 (81) 64 (19) 285 (87) 66 (13)

About the same 5037 (59) 2835 (80) 833 (20) 4036 (85) 981 (15)

Feel lonely or sad More lonely or sad 1677 (21) 1021 (82) 255 (18) 1406 (87) 259 (13)

Less lonely or sad 283 (4) 172 (81) 50 (19) 234 (87) 49 (13)

About the same 6226 (76) 3639 (82) 968 (18) 5044 (86) 1156 (14)

Feel socially connected More connected 778 (10) 476 (82) 126 (18) 648 (87) 127 (13) ***+++
Less connected 3193 (40) 2006 (84) 431 (16) 2789 (91) 391 (9)

About the same 4239 (50) 2367 (80) 716 (20) 3275 (83) 942 (17)

Weak immune system (treatment/drug) Yes 394 (4) 269 (83) 58 (17) 312 (84) 82 (16)

No 8656 (96) 5060 (81) 1396 (19) 6854 (85) 1761 (15)

Weak immune system (health condition) Yes 1190 (14) 804 (84) 154 (16) 947 (84) 241 (16) **

No 7742 (86) 4444 (80) 1297 (20) 6116 (85) 1590 (15)

Weak immune system (any reason) Yes 1301 (15) 873 (85) 170 (15) 1036 (85) 263 (15) **

No 7847 (85) 4508 (80) 1304 (20) 6197 (85) 1611 (15)

Hypertension/high BP Yes 6163 (64) 3659 (80) 1065 (20) 4725 (82) 1409 (18) ***+++
No 3013 (36) 1736 (83) 410 (17) 2522 (89) 479 (11)

Myocardial infarction Yes 982 (10) 578 (76) 186 (24) 728 (80) 250 (20) ***+++
No 8185 (90) 4809 (82) 1290 (18) 6512 (85) 1636 (15)

Angina pectoris/CHD Yes 875 (9) 534 (81) 142 (19) 715 (86) 157 (14)

No 8252 (91) 4836 (81) 1323 (19) 6499 (85) 1715 (15)

Congestive heart failure Yes 594 (6) 338 (74) 128 (26) 436 (79) 156 (21) ***+++
No 8563 (94) 5047 (82) 1343 (18) 6804 (85) 1720 (15)

Other heart conditions, eg valve/rhythm Yes 2264 (22) 1366 (81) 372 (19) 1807 (85) 447 (15)

No 6902 (78) 4021 (81) 1103 (19) 5433 (85) 1438 (15)

Stroke or brain hemorrhage Yes 909 (9) 546 (79) 161 (21) 639 (76) 262 (24) +++
No 8271 (91) 4849 (81) 1317 (19) 6612 (85) 1626 (15)

High cholesterol Yes 6117 (65) 3689 (81) 1000 (19) 4827 (84) 1262 (16)

No 3033 (35) 1694 (81) 472 (19) 2404 (85) 616 (15)

Cancer (non-skin) Yes 1940 (20) 1202 (82) 304 (18) 1541 (84) 393 (16)

No 7235 (80) 4191 (81) 1172 (19) 5706 (85) 1494 (15)

Alzheimers/dementia Yes 395 (3) 230 (79) 75 (21) 222 (61) 171 (39) +++
No 8788 (97) 5168 (81) 1403 (19) 7031 (85) 1718 (15)

Depression Yes 1919 (21) 1211 (82) 309 (18) 1472 (83) 438 (17)

No 7246 (79) 4177 (81) 1165 (19) 5769 (85) 1445 (15)

Osteoporosis or soft bones Yes 1879 (19) 1154 (81) 294 (19) 1466 (84) 404 (16)

No 7262 (81) 4223 (81) 1172 (19) 5764 (85) 1466 (15)

Broken hip Yes 355 (3) 205 (82) 58 (18) 238 (74) 116 (26) +++
No 8823 (97) 5190 (81) 1419 (19) 7014 (85) 1769 (15)

Emphysema/asthma/COPD Yes 1657 (17) 1036 (81) 276 (19) 1284 (82) 364 (18) ++
No 7516 (83) 4357 (81) 1200 (19) 5964 (85) 1520 (15)

Diabetes/high blood sugar Yes 2808 (30) 1789 (83) 441 (17) 2143 (82) 651 (18) *+++
No 6359 (70) 3603 (80) 1031 (20) 5098 (86) 1235 (14)

Any arthritis Yes 2790 (64) 1681 (79) 494 (21) 2103 (81) 671 (19) +
No 1464 (36) 856 (82) 238 (18) 1157 (84) 299 (16)
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The complete list of VIMP for Table  2 can be found in 
Appendix Table S3. We also used Internet access as an 
additional predictor for the outcome telehealth pro-
vided by PCP and Table S4 showed significant predictors, 
among which Internet access is the strongest predictor. 
Table  1 consists of stacked contingency tables of vari-
ables, and the first two rows of each contingency table 
for each variable were used for calculating an odds ratio 
(OR) with survey weights to demonstrate the direction 
of effects. Table  2 presents the estimate, standard error 
(SE), and the P value of VIMP, followed by the survey-
weighted OR. A large estimate of VIMP indicates a vari-
able that is strongly associated with the corresponding 
outcome, while a negative estimate indicates a noise 
variable. An OR greater than 1 indicates a positive asso-
ciation between the first category of the variable and the 
corresponding outcome, compared with its second cat-
egory, while an OR less than 1 indicates a negative asso-
ciation. For variables with yes and no responses, an OR 
greater than 1 indicates a positive association since the 
first category is always for the yes response. The effects of 
three informative multifactorial categorical variables are 
shown in Fig. 2 for race/ethnicity and region and Fig. S3 
for Medicare Advantage.

Coverage of telehealth
We detected 14 variables significantly associated with 
telehealth coverage after adjusting for other variables. 
Residing area (metro residence, VIMP = 2.00, SE = 

0.24, p < .001, OR = 2.00) and race/ethnicity (VIMP = 
1.14, SE = 0.27, p < .001, OR = 1.92) were the most 
informative factors (see Table  2), indicating that non-
hispanic white and metro residence were more likely to 
have coverage of telehealth. In addition, the relatively 
young group (VIMP = 0.10, SE = 0.02, p < .001, OR = 
1.65) and high income group (VIMP = 0.10, SE = 0.05, 
p = .026, OR = 0.49) tended to have higher coverage. 
Beneficiaries who had positive COVID-19 test (VIMP 
= 0.25, SE = 0.10, p = .005, OR = 1.31) and were able 
to get food (VIMP = 0.99, SE = 0.30, p = .001, OR = 
1.58) and pay rent/mortgage (VIMP = 0.47, SE = 0.21, 
p = .011, OR = 1.39) were more likely to have tele-
health coverage.

In terms of mental effects of the pandemic and non-
COVID-19 health status or habit, beneficiaries with tel-
ehealth coverage tended to feel lonely or sad (VIMP = 
0.38, SE = 0.13, p = .002, OR = 1.05) and have depres-
sion (VIMP = 0.05, SE = 0.01, p < .001, OR = 1.08). 
Beneficiaries who had coverage of telehealth were more 
likely with high cholesterol (VIMP = 0.12, SE = 0.01, 
p < .001, OR = 1.04), but no heart conditions such as 
myocardial infarction, angina pectoris/coronary heart 
disease (CHD), congestive heart failure (see Table S3) 
or abnormal valve/rhythm (VIMP = 0.01, SE = 0.01, 
p = .026, OR = 0.96); they were with low probability of 
having any arthritis (VIMP = 0.06, SE = 0.01, p < .001, 
OR = 0.83) or reporting e-cigarette usage (ever used, 
VIMP = 0.15, SE = 0.07, p = .016, OR = 0.92; smoke 
now, VIMP = 0.61, SE = 0.09, p < .001, OR = 0.72)

Table 1 (continued)

Number (Survey-weighted  percentage†)

Coverage of telehealth Access to the Internet

Variable Category Frequency Yes No Yes No Sig‡

Any heart condition Yes 3253 (32) 1945 (80) 550 (20) 2548 (84) 691 (16)

No 5901 (68) 3436 (82) 924 (18) 4685 (85) 1189 (15)

Any osteoporosis or broken hip Yes 2085 (20) 1272 (81) 323 (19) 1602 (83) 473 (17) ++
No 7056 (80) 4106 (81) 1143 (19) 5630 (85) 1395 (15)

Ever smoke cigarette/cigar/pipe Yes 5148 (56) 3024 (81) 843 (19) 4183 (86) 942 (14) +++
No 4034 (44) 2371 (81) 635 (19) 3070 (83) 946 (17)

Currently smoke cigarette/cigar/pipe Yes 688 (16) 381 (78) 132 (22) 522 (80) 162 (20) *+++
No 4456 (84) 2641 (81) 710 (19) 3657 (87) 780 (13)

Ever used e-cigarette Yes 484 (6) 284 (80) 78 (20) 414 (88) 67 (12) +
No 8687 (94) 5109 (81) 1397 (19) 6835 (84) 1814 (16)

Smoke e-cigarette now Yes 63 (15) 38 (75) 12 (25) 57 (92) 6 (8)

No 421 (85) 246 (81) 66 (19) 357 (87) 61 (13)
† Categories of “inapplicable/missing”, “don’t know”, “not ascertained”, and “refused” were excluded in calculating percentages and weighted chi-squared statistics

 ‡Sig indicates significant level according to P values: when the outcome is telehealth coverage, * for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001; when the outcome is 
Internet access, + for p ≤ 0.05, ++ for p ≤ 0.01, and +++ for p ≤ 0.001
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Access to the internet
Among the 18 variables listed in Table  1, 11 variables 
were significantly associated with access to the Internet. 
The two most informative factors are Medicare-Medicaid 
dual eligibility (VIMP = 9.78, SE = 1.16, p < .001, OR 
= 0.13) and income (VIMP = 3.83, SE = 0.49 p < .001, 
OR = 0.14), indicating that nondual-eligible beneficiar-
ies (not eligible for Medicaid benefits) and beneficiaries 

with higher income were more likely to have access to 
the Internet. In addition, the non-hispanic white group 
(VIMP = 2.05, SE = 0.44, p < .001, OR = 3.85) and rela-
tively young group (VIMP = 0.96, SE = 0.10, p < .001, 
OR = 2.74) tended to have access to the Internet. Benefi-
ciaries with Internet access were those who were able to 
get food (VIMP = 0.83, SE = 0.24, p < .001, OR = 1.18) 

Fig. 2 Random Forest estimated probabilities of outcomes plotted against candidate variables. A The association between race/ethnicity and 
telehealth coverage. B The association between race/ethnicity and Internet access. C The association between region and telehealth coverage. D 
The association between region and Internet access
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but more likely to feel lonely or sad (VIMP = 0.14, SE = 
0.07, p = .018, OR = 1.06) .

In terms of non-COVID-19 health status or habit, 
beneficiaries with Internet access tended to report 
e-cigarette usage (ever used, VIMP = 0.15, SE = 0.06, 
p = .008, OR = 1.32) but do not have weak immune sys-
tem due to health conditions (VIMP = 0.01, SE = 0.01, 
p = .039, OR = 0.98). Although beneficiaries report-
ing any heart condition had lower probability of Inter-
net access, those with angina pectoris/CHD (VIMP = 
0.13, SE = 0.02, p < .001, OR = 1.16) and with other 
heart conidtion such as abnormal valve/rhythm (VIMP 
= 0.04, SE = 0.01, p <.001, OR = 1.02) were more likely 
to have access to the Internet.

Variable interactions
We found three pairs of variables that intensified the dis-
parity in both outcomes among combined categories. 
The interaction between residing area and age is dem-
onstrated in Fig. 3A and B for the two outcomes. The 65 
to 74 age group with the status of metro residence had 
higher probabilities of telehealth coverage and Inter-
net access (86.16% and 91.28%) than the over-74 age 
group with the status of non-metro residence (64.52% 

and 68.11%). The interaction between race/ethnicity 
and Medicare Advantage is demonstrated in Fig. 3C for 
Internet access and Fig. S3A for telehealth coverage. The 
non-Hispanic white group with no Medicare Advantage 
enrollment had higher probabilities of Internet access 
(89.61%) and telehealth coverage (83.43%) than the non-
Hispanic black group (72.44% and 67.28%). The non-His-
panic white group without congestive heart failure (ever) 
also had higher probabilities of Internet access (88.99% 
shown in Fig. 3D) and telehealth coverage (83.58% shown 
in Fig. S4B) than the non-Hispanic black group with con-
gestive heart failure (65.11% and 67.45%).

Discussion
This study set out to investigate the use of telehealth 
among older adults during the pandemic in the U.S. Spe-
cifically, we aimed to model telehealth coverage offered 
by PCP and Internet access reported by Medicare ben-
eficiaries aged 65 Years and older during the Winter of 
2021. Utilizing nationally representative survey data, we 
examined patterns in coverage of telehealth and access 
to the Internet during the COVID-19 pandemic. First, 
we identified about four-fifth of older beneficiaries who 
reported telehealth coverage and Internet access during 

Table 2 Informative variables for predicting telehealth coverage and Internet access from Random Forest analyses

Est and SE indicate estimation and standard error for Random Forest variable importance (VIMP)

 §OR indicates the survey-weighted odds ratio indicating the direction of effects: if the value is larger than one, the first category of the variable in Table 1 is more likely 
with a positive outcome than the second category. For example, the odds ratio of age is 1.65, indicating that the 65 to 74 age group was more likely with telehealth 
coverage than the over-74 age group.

 ‡Sig indicates significant level according to P values of VIMP: when the outcome is telehealth coverage, * for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001; when the 
outcome is Internet access, + for p ≤ 0.05, ++ for p ≤ 0.01, and +++ for p ≤ 0.001

Coverage of telehealth Access to the Internet

Variable Est SE P value OR§ Est SE P value OR§ Sig‡

Age 0.10 0.02 0.000 1.65 0.96 0.10 0.000 2.74 ***+++
Race/ethnicity 1.14 0.27 0.000 1.92 2.05 0.44 0.000 3.85 ***+++
Metro residence 2.00 0.24 0.000 2.00 -0.04 0.03 0.878 1.70 ***

Income 0.10 0.05 0.026 0.49 3.83 0.49 0.000 0.14 *+++
Medicare-Medicaid dual eligibility 0.50 0.53 0.172 0.50 9.78 1.16 0.000 0.13 +++
Positive COVID-19 test 0.25 0.10 0.005 1.31 0.03 0.14 0.411 0.82 **

Able to pay rent/mortgage 0.47 0.21 0.011 1.39 0.24 0.26 0.172 2.13 *

Able to get food 0.99 0.30 0.001 1.58 0.83 0.24 0.000 1.18 **+++
Feel lonely or sad 0.38 0.13 0.002 1.05 0.14 0.07 0.018 1.06 **+
Weak immune system due to health cond -0.06 0.01 1.000 1.34 0.01 0.01 0.039 0.98 +
Angina pectoris/CHD -0.01 0.02 0.724 0.98 0.13 0.02 0.000 1.16 +++
Other heart conditions, eg valve/rhythm 0.01 0.01 0.026 0.96 0.04 0.01 0.000 1.02 *+++
High cholesterol 0.12 0.01 0.000 1.04 -0.02 0.01 0.999 0.95 ***

Depression 0.05 0.01 0.000 1.08 -0.05 0.01 1.000 0.88 ***

Any arthritis 0.06 0.01 0.000 0.83 -0.04 0.01 1.000 0.82 ***

Any heart condition 0.01 0.01 0.141 0.89 0.05 0.01 0.000 0.90 +++
Ever used e-cigarette 0.15 0.07 0.016 0.92 0.15 0.06 0.008 1.32 *++
Smoke e-cigarette now 0.61 0.09 0.000 0.72 0.04 0.03 0.152 1.60 ***
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the pandemic. Our estimate for telehealth coverage was 
about the same as the estimate from prior work on over-
all beneficiaries (80.2%)  [11]. Compared with Internet 
access, the low survey response rate for telehealth cov-
erage indicates that older people may be accustomed to 
seeing a doctor in person and less comfortable with tech-
nology  [59], possibly due to physical limitations, such 
as impaired vision or manual dexterity  [60]. Our work 

adds to the existing literature by identifying factors con-
tributing to telehealth usage in a nationally representa-
tive population with stable health insurance during the 
COVID-19 pandemic. Strong correlates, such as Medi-
care beneficiaries’ age, race/ethnicity, income, Medicare-
Medicaid dual eligibility, ability to access basic needs, 
and certain mental and physical health conditions, are 
consistent with some prior studies [61–66].

Fig. 3 Interactions of variables for predicting the probabilities of telehealth coverage and Internet access. The survey-weighted proportions 
of positive outcomes are listed in the parentheses. A The interaction between residing area and age for predicting telehealth coverage. B The 
interaction between residing area and age for predicting Internet access. C The interaction between race/ethnicity and Medicare Advantage (MA) 
for predicting Internet access. D The interaction between race/ethnicity and congestive heart failure (ever) for predicting Internet access
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We found that self-reported telehealth coverage is 
strongly associated with the result of beneficiaries’ active 
COVID-19 test, indicating increased awareness of tel-
ehealth among COVID-19 patients and the importance 
of enhancing telehealth coverage for containing the 
pandemic. We found that Internet access was positively 
related to telehealth coverage and associated with the 
type of telehealth, indicating that investment in tech-
nology infrastructure could have a significant impact on 
improving access to healthcare. Although our primary 
outcome, telehealth provided by PCP, would be affected 
more by provider factors than patient factors, the sur-
vey does not offer much information on provider factors. 
Therefore, we could only use patient factors in this paper. 
Some patient characteristics could be directly associated 
with whether a provider offers a visit to be delivered via 
telehealth, such as whether the patient is suspected of 
having COVID-19, or is considered a high-risk patient 
due to underlying health conditions. Some patient char-
acteristics, such as MA enrollment or race/ethnicity, 
could be indirectly related to the outcome since they 
are confounded with some unobserved provider factors, 
especially under the condition that no telehealth pro-
gram can be created overnight. For example, before the 
COVID-19 pandemic, if telehealth was only available to 
beneficiaries enrolled in MA, then during the pandemic, 
even MA itself is no longer associated with telehealth 
access anymore, both beneficiaries enrolled in MA and 
their providers tend to have more awareness of telehealth 
with a telehealth program that was already created.

We attempted to identify potential barriers to the 
implementation of telehealth services during the COVID-
19 pandemic. Our findings confirmed and expanded 
previous results that identified barriers to access and uti-
lization of telemedicine, such as the age of the patient, 
racial/ethnic disparities, and type of community and geo-
graphic location [67, 68]. Our results suggested that ben-
eficiary who is less likely to have access to telehealth from 
PCP tends to be someone who is a non-metro residence, 
with a lower income, or without Internet access. Tele-
health utilization in rural areas, particularly the Southern 
regions of the country, has previously been limited  [69, 
70]. However, the regional differences in older beneficiar-
ies’ access to the Internet were not as large. Although our 
descriptive statistics show that males were more likely 
to have Internet access, this difference is not significant 
in our classification model after adjusting for other vari-
ables. Previous studies found that females utilized tel-
ehealth services more than males [71], while we observed 
similar awareness of primary care virtual appointments 
between females and males in U.S. Medicare beneficiar-
ies aged 65 years and older.

Before the COVID-19 pandemic, telehealth reim-
bursement was limited to the management of chronic 
conditions  [11]. Limited reimbursement may constrain 
the widespread use of telehealth. We found that several 
mental and physical health conditions were significantly 
associated with telehealth coverage, indicating that such 
limitations may still exist for certain chronic conditions 
in the wake of the pandemic. Although several health 
conditions were negatively associated with telehealth 
coverage, we found that depression was positively asso-
ciated with telehealth coverage, which may reflect the 
parity between mental health coverage and coverage for 
other medical conditions.

Compared with the existing literature, we analyzed 
related factors in a more inclusive fashion to identify 
main effects and complex interactions. We believe that 
after adjustment for different factors, the discoveries of 
the most informative ones could be more consistent and 
reproducible. On the other hand, adding more factors 
brings risks of multicollinearity and missing data, which 
causes the problem of convergence for parametric sta-
tistical models. We tried classical logistic regression and 
lasso penalized logistic regression for this dataset, which 
did not converge due to a large amount of missing values 
on the predictors. When the goal is to rank the factors 
which are highly correlated and interacted, nonparamet-
ric variable important indices [41, 72, 73], instead of odds 
ratios or regression coefficients, may be more suitable for 
providing insights. The success of this predictive model 
was also largely attributed to the high quality of the data. 
Although there are many missing values, the misclassi-
fication errors are about only 20%, indicating high accu-
racy of missing data imputation by Random Forest  [53] 
and low common biases related to surveys, such as recall 
bias. Random Forest methods have a high potential for 
analyzing survey data whose variables are multifactorial 
and interacted.

Limitations
This study has several limitations. First, it relies upon 
self-reported data from a national survey limited to a 
relatively short period. As such, our findings may be 
subject to self-reporting errors and are not generaliz-
able to older adults who are non-Medicare beneficiaries 
or live in long-term care facilities. We do not have data 
to infer if similar issues occurred in the broader popula-
tion and patients on commercial insurance or uninsured. 
Second, our study has two types of missing data prob-
lems: the missing values for the outcome and the predic-
tors. Although low misclassification errors indicate high 
accuracy of missing data imputation for the predictors 
by Random Forest, we have to omit the missing values 
for the outcome, which could bring bias to the model’s 



Page 12 of 14Lu and Liao  BMC Public Health          (2023) 23:368 

findings. Additionally, the cross-sectional nature of the 
data and analyses prevents assumptions of causality. As 
a cross-sectional study, changes in telehealth utilization 
were not directly assessed, but inferred based on stud-
ies of telehealth use prior to the pandemic. Furthermore, 
several important factors were not included in the sur-
vey, such as education attainment, information on state 
residency, primary diagnosis from the telehealth visit, 
etc. We could not evaluate effects of specific pandemic 
responses such as masking policies and restrictions on 
elective surgeries, or effects of specific regulatory issues 
on telemedicine such as payment, licensure, credential-
ing, online prescribing, medical malpractice, privacy and 
security, etc. Further, the mental effects of the pandemic 
were not evaluated via clinical mood or disorders to cap-
ture different dimensions of mental health problems.

Conclusions
In summary, this cross-sectional survey study suggests 
that several barriers to telehealth utilization exist among 
older Medicare beneficiaries. The COVID-19 pandemic 
may exacerbate existing barriers for this high at-risk 
population. As in-person visits were being discouraged 
or were unavailable due to the risks of the COVID-19 
virus, the need for strategies for improving telehealth uti-
lization grows. Policymakers must continue to identify 
effective means of ensuring equal access and utilization 
of telehealth.
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