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Estimation of individual treatment effect in observational data is complicated due to the

challenges of confounding and selection bias. A useful inferential framework to address

this is the counterfactual model which takes the hypothetical stance of asking what if an

individual had received both treatments. Making use of random forests (RF) within the

counterfactual framework, I estimate individual treatment effects by directly modeling the

response.

This thesis consists of five Chapters. Chapter 1 reviews the methodology in causal in-

ference and provide mathematical notations. Major approaches reviewed include potential

outcome approach, graphical approach and counterfactual approach. Chapter 2 discusses

assumptions for counterfactual approach. P-values are useful in causal inference, but when-

ever it is used, caution must be taken. Section 2.3 and Section 2.4 propose machine learning

methods as alternatives to p-values and checking proportional hazards assumption in sur-

vival analysis. These two sections are more general in content even beyond the scope of

counterfactual approach. Chapter 3 describes six random forest methods for estimating in-

dividual treatment effects under counterfactual approach framework and discusses model

consistency and convergence of random forest in Section 3.6. Chapter 4 demonstrates

the performance of these methods in complex simulations and how the most appropriate

method is used in a real dataset for continuous outcome. Chapter 5 addresses causal in-

ference in survival analysis of ischemic cardiomyopathy. Treatment effect is viewed as a



dynamic causal procedure. New random forest methods are proposed in this chapter to

assess individual therapy overlap. These methods possess the unique feature of being able

to incorporate external expert knowledge either in a fully supervised way (i.e., we have a

strong belief that knowledge is correct), or in a minimally-supervised fashion (i.e., knowl-

edge is not considered gold-standard).
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parameter ĉ is marked below using C = ĉ. . . . . . . . . . . . . . . . . . . 116

5.4 (a) Cutoff value C∗ as function of random forest terminal node size; (b)

OOB concordance between estimated overlap indicators and expert knowl-

edge under different number of treatments. Subpanel (a) demonstrates gen-

eral robustness to nodesize. Subpanel (b) shows that concordance for a

given treatment is generally robust to the number of treatments for MRF

and RF-D but less so for RF-C. Definition for line types are given in the

legend; colors used are the same as the legend in panel (a). . . . . . . . . . 118

5.5 ATE (5.13) and ATT (5.14) estimated values where overlap was determined

using the three methods RF-C, RF-D, and MRF. Each subfigure title in-

dicates the pairwise comparison for treatment j versus k. Black lines are

ATE values τ̂ ∗j,k(t); blue and red lines are ATT values, where blue is τ̂ ∗
j k(t),

where j is the treated group, while red is τ̂ ∗j k
(t), where k is the treated group.122

x



5.6 Identifying patients who received optimal treatment and those who did not.

Optimal therapy is defined as treatment maximizing restricted mean sur-

vival time (RMST). Pie charts display gain in months for alternative opti-

mized therapies and their respective sample sizes. If optimized treatment

is the assigned treatment, gain is defined as zero. . . . . . . . . . . . . . . 128

5.7 Gain in months for patients who received SVR but where optimal therapy

was CABG. Gain is plotted against hematocrit level and angina pectoris

grade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.8 Paradigm for Individual Causal Inference and Treatment Decision Making

for Ischemic Cardiomyopathy. . . . . . . . . . . . . . . . . . . . . . . . . 132

5.9 Confidence intervals for individual treatment effects (5.5) at t = 5 years.

Each subfigure indicates a pairwise comparison for treatment j versus k.

Red and blue indicate patients with significant treatment effect (p-value <

.05), where blue are from treatment j group and red are from treatment

group k. Thus, blue and red boxes correspond to some of the patients from

blue and red lines in Figure 5.5. Survival curve domination is defined as

τ
(2)
j,k (t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.10 Confidence intervals for coefficients from linear regression of estimated

individual treatment effect for pairwise comparison of treatment j versus

k. Regression included patients receiving either treatment j or k and who

were eligible for both treatments. For each variable, there are 4 boxplots

corresponding to coefficients for that variable for t = 2, 4, 6, 8 (years). . . . 134

5.11 Linear regression results continued from Figure 5.10. . . . . . . . . . . . . 135

xi



List of Tables

2.1 Results from analysis of systolic heart failure data. . . . . . . . . . . . . . 30

2.2 Stepwise models used in calculating Errstep. . . . . . . . . . . . . . . . . . 32

2.3 Difference between VIMP and marginal VIMP. . . . . . . . . . . . . . . . 33

2.4 Results from analysis of simulated Cox regression data set. The model is

misspecified by failing to include the non-linear term for tumor volume. . . 40

2.5 Results from Cox regression simulation using a B-spline to model non-

linearity in tumor volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 PH assumption checking for survial data in Section 2.3. . . . . . . . . . . . 46

4.1 (a)Summary of exposure models used in Ghosh and Setoguchi simulations. 77

3.1 (b)Summary of outcome models used in Ghosh and Setoguchi simulations. 77

4.3 Difference in variables by drug use illustrating unbalancedness of Aware

data. Only significant variables (p-value < 0.05) from logistic regression

analysis are displayed for clarity. . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Linear regression where dependent variable is number of unprotected sex

acts from Aware data. Only variables with p-value < 0.10 from regression

analysis are displayed for clarity. . . . . . . . . . . . . . . . . . . . . . . . 85

xii



4.5 Linear regression of Aware data with dependent variable equal to the es-

timated causal effects {τ̂synCF(xi), i = 1, . . . , n} from counterfactual syn-

thetic random forests. Causal effect is defined as the mean difference in

unprotected sex acts for drug users versus non-drug users. Standard errors

and significance of linear model coefficients were determined using sub-

sampling. For clarity, only significant variables with p-value < 0.05 are

displayed (the intercept is provided for reference but is not significant). . . . 88

5.1 Abbreviations and terminology used throughout the paper . . . . . . . . . . 95

5.2 Expert knowledge used for determining treatment eligibility . . . . . . . . 110

5.3 Cutoff values for estimating treatment eligibility . . . . . . . . . . . . . . . 116

5.4 Difference in number of months alive before maximum follow-up time,

t0 = 9.36 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Subgroup detection using bump hunting after variable selection. CATEo
jk

equals the conditional ATE before t0, conditioned on subgroup criteria. . . . 127

xiii



Chapter 1

Causality

1.1 Introduction

Causality or causation, referring to observed associations on an informal basis, is one of

oldest topics in philosophy. Aristotle once said in the Posterior Analytics, “We think we

have knowledge of a thing only when we have grasped its cause”. Today a formal the-

ory of causal inference has been developed, with major contributions from Donald Rubin,

James Robins, and Judea Pearl. Shpitser and Pearl (2008) suggest a hierarchy of queries in

causal relationships: “associative relationships, derived from a joint distribution over the

observable variables; cause-effect relationships, derived from distributions resulting from

external interventions; and counterfactuals, derived from distributions that span multiple

‘parallel worlds’ and resulting from simultaneous, possibly conflicting observations and

interventions.” Examples would be:

Associative relationships: “I took an aspirin after dinner, will I wake up with

a headache?”

Cause-effect relationships: “if I take an aspirin now, will I wake up with a

headache?”

Counterfactuals or “what-if” questions: “I took an aspirin, and my headache

is gone; would I have had a headache had I not taken that aspirin?”

1



2

I will review approaches addressing the second query in Section 1.2 and 1.3, for instance,

the widely used propensity score approaches in causal inference studies; however, this

dissertation concentrates more in the counterfactual models.

An intervention’s effectiveness is usually investigated in two settings. First, well-

designed and implemented randomized controlled trials are considered the “gold standard”.

Fisher’s book The Design of Experiments (1935) argued the challenges of confounding and

emphasized randomization in experiments. The second way is to evaluate causality from

observational studies. Even for a medical discipline steeped in a tradition of randomized

trials, the evidence basis for only a few guidelines is based on randomized trials (Tricoci

et al., 2009). In part this is due to continued development of treatments, in part to enormous

expense of clinical trials, and in large part to the hundreds of treatments and their nuances

involved in real-world, heterogeneous clinical practice. Thus, many therapeutic decisions

are based on observational studies, which is the main theme of this dissertation.

However, comparative treatment effectiveness studies of observational data suffer from

two major problems: only partial overlap of treatments and selection bias. Each treatment

is to a degree bounded within constraints of indication and appropriateness. Thus, trans-

plantation is constrained by variables such as age, a mitral valve procedure is constrained

by presence of mitral valve regurgitation. However, these boundaries overlap widely, and

the same patient may be treated differently by different physicians or different hospitals,

often without explicit or evident reasons. Thus, a fundamental hurdle in observational

studies evaluating comparative effectiveness of treatment options is to address the resulting

selection bias or confounding. Naively evaluating differences in outcomes without doing

so leads to biased results and flawed scientific conclusions.

Formally, let {(X1, T1, Y1), ..., (Xn, Tn, Yn)} denote the data where Xi is the covariate

vector for individual i, Yi is the observed outcome, and Ti denotes the treatment group of

i. For concreteness, let us say Ti = 0 represents the control group, and Ti = 1 the inter-



3

vention group. In the following sections of this chapter, I categorized approaches in causal

inference into three schools and show how these apporaches use different mathematical

languages that extend the limit of this notation. I would like to introduce how potential

outcome approach and graphical approach deal with overall causal effect and how counter-

factual approach addresses individual causal effect. However, these three schools are not

mutually exclusive: some models in graphical approach can be used to estimate counter-

factual individual causal effect.

1.2 The potential outcome approach

The potential outcome approach is often referred as Rubin causal model or the Neyman-

Rubin causal model, contributed by Donald Rubin’s work (1974) and Jerzy Neyman’s work

(1923). A key contribution of the potential outcome approach is addressing treatment as-

signment mechanism. Neyman’s work uses randomized experiment to eliminate bias that

could be potentially introduced by treatment assignment: he studies potential yield of v

varieties of crops on m plots through an urn model (repeated-sampling). Rubin’s work in

obervational studies links the potential outcomes to the more general “missing data” mech-

anism. let Yi(0) and Yi(1) denote the potential outcome for i under treatments Ti = 0 and

Ti = 1, respectively. The assignment mechanism can be written as

P (T |X, Y (0), Y (1)).

Rubin (1978) defines the treatment assignment mechanism is “ignorable” when

P (T |X, Y (0), Y (1)) = P (T |X, Y ) since probabilistic functions of recorded values are

known, and Rosenbaum and Rubin (1983) define “strongly ignorable” or “unconfounded”

as P (T |X, Y (0), Y (1)) = P (T |X) or T ⊥ {Y (0), Y (1)}|X. For the latter definition,
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assumption of strongly ignorable treatment assignment (SITA) is widely used. Under the

assumption of SITA, we have

τ(x) =E[Y (1)|T = 1,X = x]− E[Y (0)|T = 0,X = x]

=E[Y |T = 1,X = x]− E[Y |T = 0,X = x].

(1.1)

Thus, SITA ensures that τ(x) is estimable because it reduces estimating τ(x) to estimat-

ing conditional expectations of observable values. It should be emphasized that with-

out SITA one cannot guarantee estimability of τ(x) because E[Y (j)|X = x] is not es-

timable in general and E[Y |T = j,X = x] = E[Y (j)|X = x] does not hold in general.

SITA also provides a means for estimating the average treatment effect (ATE), a standard

measure of performance in non-heterogeneous treatment settings. The ATE is defined as

τ0 = E[Yi(1)]− E[Yi(0)] = E[τ(X)]. By averaging over the distribution of X in (1.1),

τ0 = E
{
E[Y |T = 1,X = x]− E[Y |T = 0,X = x]

}
= E[Y |T = 1]− E[Y |T = 0].

(1.2)

Thus SITA ensures that τ0 is estimable.

Although direct estimation of (1.1) or (1.2) is possible by using mean treatment differ-

ences in cells with the same X as raw matching design, due to the curse of dimensionality

this method will only work when X is low dimensional. Propensity score analysis proposed

by Rosenbaum and Rubin (1983) is one means to overcome this problem. The propensity

score is defined as the conditional probability of receiving the intervention given X = x,

denoted here by e(x) = P{T = 1|X = x}. Under the assumption of SITA, the propensity

score possesses the so-called balancing property. This means that T and X are conditionally

independent given e(X). Thus variables X are balanced between the two treatment groups

after propensity score matching, thereby approximating a randomized clinical trial (Ru-

bin, 2007). Importantly, the propensity score is the coarsest possible balancing score, thus
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not only does it balance the data, but it does so by using the coarsest possible condition-

ing, thus helping to mitigate the curse of dimensionality. In order to use the propensity

score for treatment effect estimation, Rosenbaum and Rubin (1983) further show that if the

propensity score is bounded 0 < e(X) < 1 and SITA holds, then treatment assignment

is conditionally independent of the potential outcomes given the propensity score; i.e.,

T ⊥ {Y (0), Y (1)}|e(X). This result is the foundation for ATE estimators based on strat-

ification or matching of the data on propensity scores, which contains three steps: firstly

e(X) is etimated through a statistical model like logit regression, and secondly, ê(Xi) is

used for each data to get matched pairs or stratas; last, differences in Yi within each pair or

strata are averaged to get average treatment effect τ̂0. However, this is not the only means

for using the propensity score to estimate treatment effect. Others have directly used the

SITA assumption to derive weighted estimators for the ATE. Analgous to (1.1), under SITA

one has

E
[ TY
e(X)

|X = x
]
= E[Y |T = 1,X = x], E

[(1− T )Y

1− e(X)
|X = x

]
= E[Y |T = 0,X = x],

which is the basis for ATE weighted propensity score estimator from a finite sample of size

n:

τ̂0 =
1

n

∑
Ti=1

Yi
ê(Xi)

− 1

n

∑
Ti=0

Yi
1− ê(Xi)

. (1.3)

Developed by Horvitz and Thompson (1952), Equation (1.3) is also refered as the dif-

ference of two Horvitz-Thompson estimators. If some estimated propensity score ê(Xi)

is close to 0 (for a treated unit) or 1 (for a control unit), its inverse weight can become

very large and unstable for estimating τ̂0 in finite sample. One solution is to normalize the
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weights within each treatment group:

τ̂ ∗0 =
(∑

Ti=1

1

ê(Xi)

)−1∑
Ti=1

Yi
ê(Xi)

−
(∑

Ti=1

1

1− ê(Xi)

)−1∑
Ti=0

Yi
1− ê(Xi))

.

See for example, Hirano et al. (2003) and Lunceford and Davidian (2004).

I only categorized those methods, which assume T ⊥ {Y (0), Y (1)}|e(X) and uti-

lize e(X) for matching or weighting, as “potential outcome approach”. Studies using raw

oberved variables for matching belong to this category too (Alexander et al., 2002). In this

section, the cause-effect relationships are simply reduced as average treatment effect τ0 be-

tween two treatments, where all the other covariates X are treated as fixed: how these X

may “cause” each other or “cause” the outcome is unknown. Section 1.2 addresses “cause

of effect” in Section 1.1 through “balancing” on confoundness: Holland (1986) call this as

“effects of causes”. Section 1.3, graphical approach, is about directly dealing with “cause”.

Moreover, τ(x) here can be considered as counterfactual treatment effect in Section 1.1,

but it is not estimated here; in Section 1.4, I will discuss more about τ(x). Notice that SITA

assumption does not require correct form of e(X) as propensity score approach does; there-

fore propensity score approach demands more restrict assumption. However, 0 < e(x) < 1

is till required for any causal inference on x: more reason is in Section 1.4.

1.3 The graphical approach

This section is about Bayesian network (BN) model using directed acyclic graph (DAG).

This graphical approach usually addresses more complex cause-effect relationships than

potential outcome approach does: the goal here is to smell out a plot of all the variables.

Based on Chapter 2 and 3 in the book of Koller and N. Friedman (2009) and Chapter 3 in

Pearl (2009)’s book, I give some basic concept, assumption and example of this approach.
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A graph is a data structure K consisting of a set of nodes, X = {X1, ..., Xn}, and

a set of edges E: K = (X,E). A pair of nodes Xi, Xj can be connected by a directed

edge Xi → Xj or an undirected edge Xi––Xj , or some edge, whether directed (in any

direction) or undirected Xi � Xj . In Xi → Xj , Xi is called parent of Xj , and Xj is

called child of Xi. Let PaKXi
denote the parents of Xi and ChKXi

denote its children in K.

Let NonDescendantsXi
be the variables in the graph that are not descendants of Xi. A

cycle in K is a directed path X1 → X2, ...,→ Xk where X1 = Xk. A graph is acyclic if it

contains no cycles.

The use of Bayes theorem and the use of graphical models explain the choice of the

name Bayesian network: A BN structure G is a directed acyclic graph defined above. G

encodes the following set of conditional independence assumptions, called the local inde-

pendencies, and denoted by Il(G):

For each variable Xi: (Xi ⊥ NonDescendantsXi
|PaGXi

).

Since the local independencies state that each node Xi is conditionally independent of its

nondescendants given its parents, a distribution P over the same space is called factorizes

according to G, when P can be expressed as a product

P (X1, ..., Xn) =
∏n

i=1 P (Xi|PaGXi
). This equation is called the chain rule for Bayesian

networks, denoted as I(P ). The individual factors P (Xi|PaGXi
) are called conditional

probability distributions (CPDs) or local probabilistic models.

The trail T � X � Y is called active and X and Y are called blocked by T in either

of the following four trails:

Causal trail T → X → Y : active if and only if X is not observed.

Evidential trail T ← X ← Y : active if and only if X is not observed.

Common cause T ← X → Y : active if and only if Z is not observed.
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Common effect T → X ← Y (v-structure): active if and only if either X or one of X’s

descendants is observed.

Let I(G) be {(T ⊥ Y |X): T and Y is d-separated by X}, I(G) can be tested through I(P )

since I(G) � I(P ).

Notations of causal inference in BN model are different: since it does not assume binary

treatment variable by default as the potential outcome model does, probabilities of Y (0)

and Y (1) are substituted by P (y|do(t)), P (y|t̂) or Pt(y), which is generally different from

P (y|T = t) given confounding variables X �= ∅. Instead of working on the expectations

of Y , Baysian Network model is a non-parametric method that works on the observed

joint and conditional distributions, and estimates treatment effect through a manipulation

on these distributions. Notation do(·) is used to manage extra information that even a

full specification of a population density function does not permit us to predict beyond

static conditions: for example, relationships would change from observational to controlled

studies. In example illustrated in Figure 1.1, the total effect of fumigants T , on yields Y can

be estimated consistently from the observed distribution of T , X1, X2, X3 and Y through

formula (1.4), where the quantities X1, X2, and X3 denote the eelworm population before

treatment, after treatment and at the end of the season, respectively. Last year’s eelworm

population X0, is marked by a hollow circle because it is an unknown quantity, as is B, the

populaiton of birds and other predators.

P (y|t̂) =
∑
x1

∑
x2

∑
x3

P (y|x1, x2, t)P (x2|x1, t)

×
∑
t′
P (x3|x1, x2, t′)P (x1, t′)

(1.4)

An intuitive question would be, can we get consistent estimate of P (y|t̂) when B and

X0 is unknown? This question leads to the assumption in BN. Equavlent to SITA but in

different demonstraton, two assumptions in BN are called back-door criteria and front-door
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T
•

◦
X0

•X1

◦ B

•X2
•X3

•
Y

Figure 1.1: Causal diagram example from Pearl (2009)’s book

T=fumigants;

X=eelworm population: subscripts, 0, 1, 2, and 3, represent last year, before treatment, after treatment, and

the end of the season, respectively;

B=the population of birds and other predators;

Y =yields;

Causal diagram represents the effect of fumigants (T ) on yields (Y ). X0 and B are unknown in quantity

denoting by hollow circle. Dashed arrows are used to connect unmeasured quantities and solid arrows are

used to connect measured quantities

criteria, based on which Pearl (1995) derived causal calculus.

Back-Door A set of variables X satisfies the back-door criterion to an ordered pair of

variables (T, Y ) in a DAG if: (i) no node in X is a descendant of T and (ii) X blocks

every path between T and Y that contains an arrow into T . For example, in Figure (1.4),

{X1, X3} meet the back-door criterion of T and Y .

Back-Door Adjustment If X satisfies the back-door criterion to (T, Y ), then the causal

effect of T on Y is identifiable and is given by the formula

P (y|t̂) =
∑
x

P (y|t, x)P (x) =
∑
x

P (x, t, y)

P (t|x) , (1.5)

which reflects back to the potential outcome approach in equation (1.3).

Front-Door A set of variables X satisfies the front-door criterion to an ordered pair of

variables (T, Y ) if: (i) X intercepts all directed paths from T to Y ; (ii) there is no
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back-door path from T to X; and (iii) all back-door paths from X to Y are blocked by T .

Front-Door Adjustment If X satisfies the front-door criterion to (T, Y ) and if

P (t, x) > 0, then the causal effect of T on Y is identifiable and is given by the formula

P (y|t̂) =∑x P (x|t)
∑

t′ P (y|t′, x)P (t′).
In the front-door criterion, adjustment variable X can be the descendants of T. But the

backdoor criterion was used twice: first computes the causal effect of T on X and then

computes the causal effect of X on Y .

As Pearl (2009) states, the role of graphs is to provide convenient means of express-

ing substantive assumptions; to facilitate economical representation of joint probability

functions; and to facilitate efficient inferences from observations. The potential outcome

approach is not designed to rule out the possibility that outcome may cause the treatment: it

is an unspoken assumption that the “cause” is treatment since usually treatment temporally

precedes outcome. However, there is no such limit that the structure of the BN here has to

be pre-determined by the researchers. Spirtes et al. (2000)’s book offers several Discovery

Algorithms to identify the structure of networks, which is beyond the scope of this dis-

sertation. Other kind of graphical models, such as undirected graphical models, Gaussian

network models, and Markov Networks, can be found in Koller and N. Friedman (2009)’s

book.

1.4 The counterfactual approach

Pearl (2009) defines Counterfactual in his book Chapter 7 as: Let X and Y be two subsets

of variables. The counterfactual sentence “The value that Y would have obtained, had
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X been x” is interpreted as denoting the potential response Yx(u)
1. τ(x) in Section 1.2

is still used here as counterfactual treatment effect, which can be rewritten as τ(x) =

E[Yx(1)−Yx(0)]. If unobserved Yx(1) or Yx(0) can be “observed” through an imaginative

counterfactual in term of methematical function

Y = g(T,X, εY ), (1.6)

then Yx(1) = g(1,x, εY ) and Yx(0) = g(0,x, εY ). This function g reflects Laplace (1814)’s

demon or Laplacian determinism in the history of science.

We may regard the present state of the universe as the effect of its past and

the cause of its future. An intellect which at a certain moment would know all

forces that set nature in motion, and all positions of all items of which nature

is composed, if this intellect were also vast enough to submit these data to

analysis, it would embrace in a single formula the movements of the greatest

bodies of the universe and those of the tiniest atom; for such an intellect

nothing would be uncertain and the future just like the past would be present

before its eyes.

–Pierre Simon Laplace, A Philosophical Essay on Probabilities

It is very hard to talk about causality without being a Laplacian determinist. At the

1In BN, given model 〈M,P (u)〉, the conditional probability P (BA|e) of a counterfactual sentence “If it

were A then B”, given evidence e, can be evaluated using the following three steps.

1. Abduction - Update P (u) by the evidence e to obtain P (u|e).
2. Action - Modify M by the action do(A), where A is the antecedent of the counterfactual, to obtain the

submodel MA.

3. Prediction - Use the modified model 〈MA, P (u)〉 to compute the probability of B, the consequence of the

counterfactual.

To compute, store and use P (u|e), one can use the Twin Network method, which creates two networks, one

to represent the actual world and one to represent the hypothetical word.
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first glance, using equation (1.6) to solve causality seems rude to disbelievers of Laplacian

determinism. In statistics language, this disbelif reflects the doubt that Yx(1) and Yx(0) are

independant. On the other hand, potential-outcome approach, which also assumes indepen-

dence of Yx(1) and Yx(0), still is Laplacian determinism even not that obvious. Another

philosophical question would be predictability: Holland (1986) argued that only variables

with “potential exposability” can be a cause. Here this means only P (T |x) > 0 for both

T = 1 and T = 0, T can be a cause on Y for x, which requires an accurate estimate of

P (T |x) in equation (1.7),

P (T |x) = e(x). (1.7)

Equation 1.6 and 1.7 are the key in this dissertation, which rise not only some philosophical

thoughts, but also exciting transition from average treatment effect to individual treatment

effect estimate(ITE).

Using equation (1.6) and (1.7) to get counterfactual treatment effect is also called func-

tional approach in causality by Zhao (2016). Previous studies classified in this category

include linear structure equation model (SEM), which simplifies all variables in function

g and e as Si =
∑

j∈PaGSi

αijSj + εi in a graph G. Another model is the widely used “g-

formula” algorithm for causal inference in the presence of time-varying covariates Robins

et al. (1999), where we have similar τm(x) = E[Ym,x(1)]−E[Ym,x(0)] under SITA,m being

the index for time. E[Ym,x(1)] and E[Ym,x(0)] are obtained by substituting x, T = 0 and

T = 1 from a generalized linear model, whose coefficients are estimated through the gen-

eralized estimating equations (GEE) approach. Another example is Bayesian tree growing

methods which have been successfully used to identify causal effects by directly modeling

the response surface by Hill (2011). Although Hill estimates average treatment effect and

conditional treatment effect, rather than counterfactual individual treatment effect, she uses

the same manner to get Yx(1) = g(1,x, εY ) and Yx(0) = g(0,x, εY ), where g is a Bayesian
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tree model. It is worth to mention that data imputation or augmentation method for causal

inference (Dominici et al., 2006) is a special case in this category, which uses T to code Y

as bivariate variable and make g as a distribution function to impute unobserved Y (0) and

Y (1) for each x. Section 3.4 applies this imputation method.

Although effectiveness of treatment in observational studies has traditionally been mea-

sured by the ATE, the practice of individualized medicine, coupled with the increasing

complexity of modern studies, have focused recent efforts towards a more patient-centric

view (Lamont et al.,2016). Accommodating complex individual characteristics in this new

landscape has proven challenging, and for this reason there has been much interest in lever-

aging cutting-edge approaches addressing g and e, especially those from machine learning.

Machine learning techniques such as random forests Breiman (2001b) (RF) provide a prin-

cipled approach to explore a large number of predictors and identify replicable sets of

predictive factors. In recent innovations these RF approaches have been used specifically

to uncover subgroups with differential treatment responses (Su et al., 2009, 2011; Foster

et al., 2011). Some of these, such as the virtual twins approach (Foster et al., 2011), build

on the idea of counterfactuals. Virtual twins uses RF as a first step to create separate predic-

tions of outcomes under both treatment and control conditions for each trial participant by

estimating the counterfactual treatment outcome. In the second step, tree-based predictors

are used to uncover variables that explain differences in the person-specific treatment and

the characteristics associated with subgroups. In a different approach, Wager and Athey

(2017) describe causal forests for ITE estimation. Others have sought to use RF as a first

step in propensity score analysis in equation (1.7) as a means to nonparametrically estimate

the propensity score. Lee et al. (2010) found that RF estimated propensity scores resulted

in better balance and bias reduction than classical logistic regression estimation of propen-

sity scores. More details about how to set up RF to get function g in equation (1.6) are

in the Chapter 3. This dissertation focuses on estimating the counterfactual ITE using RF
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methods. In Chapter 4, two sets of challenging simulations are used to assess performance

of the various RF methods.



Chapter 2

Assumptions for counterfactual
approach
This chapter discusses counterfactual approach using function g, Y = g(T,X, εY ), to get

individual counterfactuals Yx(1) = g(1,x, εY ) and Yx(0) = g(0,x, εY ), assuming (1):

SITA: P (T |X, Y (0), Y (1)) = P (T |X) or T ⊥ {Y (0), Y (1)}|X; (2): function g is consis-

tent and (3): P (T |x) = e(x) > 0 for both T = 1 and T = 0. Apparently, SITA is unable to

test. I focus on individual’s treatment overlap from function e in assumption (3) in Section

2.1 and the specification of funciton g in Section 2.2. Since p-values are widely used in

causal inference analysis, a machine learning alternative to p-values is proposed in Section

2.3. When parametric model is used for survival analysis, another common assumption is

proportional hazards assumption, which is discussed in Section 2.4.

2.1 Complete overlap from function e

As discussed before in Section 1.4, causal inference can be done only for x when P (T |x) =
e(x) > 0 for both T = 1 and T = 0. In other words, if x is not overlap/eligible for

the treatment, there is no point to estimate treatment effect. This assumption is called

“complete overlap assumption” in Chapter 5. Note that this assumption can be checked

through other information and prior knowledge instead of modeling e(X) from the data.

Consider example in Figure 2.1, treatment A and treatment B is compared for each

15
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X = x, X = {X1, X2, . . . , Xp}. Marginal distributions P (T = A,X1 = x1) and P (T =

B,X1 = x1) are ploted in red and blue respectively. Suppose P (T = B,X1 > CX1,B) = 0,

treatment effect τ(x) �= ∅ only for {x : x1 ∈ [0, CX1,B]}. Region {x : x1 ∈ (CX1,B,∞)}
is called “lack of overlap” region from complete overlap assumption, which will be deleted

from the causality analysis. Even fuction e in e(x) = P (T |x) is consistent or correctly

specified, the deleted region is usually defined in a fashion of α significant level, where the

area of blue region in domain (CX1,αB
,∞) is α. The question is, is it worthwhile to delete

data within this α region?

(0,0)

−−Treatment A

—–Treatment B

X1

Probability

CX1,B

True non-overlap for B

CX1,αB

Potential deleted region

Figure 2.1: Marginal distribultion of overlap in X1: red dash line represents P (T =
A,X1 = x1) and blue solid line represents P (T = B,X1 = x1).

This α represents neither false positives nor false negatives of treatment effect: it only

represent an error that claim treatment effect not exist (τ(x) = ∅) while the truth is that

treatment effect does exist (τ(x) �= ∅). If the goal is to give τ(x) for each x, the quesion of

whether τ(x) = ∅ does matter. If the goal is to detect the mechanism of τ(x), for example,

further analysis τ(x) as a function of covariates X to detect moderators of treatments, one

has to consider (1) is estimate τ̂(x) still accurate when P (T |x) is small; (2) is this X1

related to Y at all. If the answer to (1) is Yes and the answer to (2) is No, there is no

need to do this region deletion or data filtering, because X1 is just a noise to outcome or

τ(x) and filtering data according to a noise variable is not necessary. If the answer to (1)
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is No and the answer to (2) is No, there is need to do region deletion or data filtering on

those X other than X1: deleted region={x : P (T |x(Y )) < α}, X(Y ) = {Xi : Xi �⊥ T and

Xi �⊥ Y }. Some machine learning approach, RF for example, is originated from nearist

neighbor mechanism of data; for {x : P (T |x(Y )) < α}, there could be potential problem

of unbalanceness of treatment assignment, making τ̂(x) not as much as accurate in this α

region.

The concept of X(Y ) reflects my recommandation of integrating a variable selection step

in causal inference with large variable number p, and procedure in section 2.3 is useful to

detect informative variables X(Y ). I am going to proof this point in Theorem 2.1.2 through

equation (1.5), which is the foundation for both potential outcome approach and Baysian

Network approach. Recall that potential outcome approach uses e(x) = P (t|x) to balance

a set of covariates X between treatment groups, and Theorem 2.1.2 says balancing on those

X(Y )C ∈ {X} is not necessary.

Definition 2.1.1. X(Y )C and X(Y ):

X(Y )C is a subset of X which is independent from Y : X(Y )C = {Xi : Xi ⊥ Y }, while

X(Y ) = {Xi : Xi �⊥ Y }; X = {X(Y )C ,X(Y )}. When the conditional probability density

function of Y is g(t,x, σ), we have g(t,x, σ) = g(t,x(Y ),x(Y )C , σ) = g(t,x(Y ), σ); so

P (y|t,x) = P
(
y|t,x(Y )

)
.

Theorem 2.1.2 (Subset X propensity score weighting). Suppose X = {X(Y )C ,X(Y )} de-

fined before and assume P (y|t̂) as equation (1.5) P (y|t̂) = ∫
X
P (y|t,x)P (x)dx:

P (y|t̂) =
∫
X(Y )

P (y|t,x(Y ))P (x(Y ))dx(Y ) =

∫
X(Y )

P (x(Y ), t, y)

P (t|x(Y ))
dx(Y ). (2.1)

For discrete variables:

P (y|t̂) =
∑
X(Y )

P (y|t,X(Y ) = x(Y ))P (X(Y ) = x(Y )) =
∑
X(Y )

P (X(Y ) = x(Y ), t, y)

P (t|X(Y ) = x(Y ))
.
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Proof.

P (y|t̂) =
∫
X

P (y|t,x)P (x)dx

=

∫
X(Y )

∫
X(Y )C

P (y|t,x)P (x)dx(Y )Cdx(Y )

=

∫
X(Y )

∫
X(Y )C

P (y|t,x(Y ))P (x)dx(Y )Cdx(Y )

=

∫
X(Y )

P (y|t,x(Y ))

[ ∫
X(Y )C

P (x)dx(Y )C
]
dx(Y )

=

∫
X(Y )

P (y|t,x(Y ))P (x(Y ))dx(Y )

Since

P (y|t,x(Y ))P (x(Y )) =
P (x(Y ), t, y)

P (t|x(Y ))
,

we also have:

P (y|t̂) =
∫
X(Y )

P (x(Y ), t, y)

P (t|x(Y ))
dx(Y )

2.2 Specification of function g

Using equation (1.6) and (1.7) to get counterfactual treatment effect first requires model

consistency of function g: in other words for parametric function, correct specification.

This section firstly addresses specification for parametric function g. More model specifi-

cation and consistency in machine learning approach random forest are in Chapter 3.

A correct specified funciton g will control for confounding variables. Kish (1959) used

the word “confounding” in the modern sense of the word, to mean “incomparability” of two

or more groups (e.g., exposed and unexposed) in an observational study. Figure 2.2 gives

an illustration of a simple relationship of confounding variable and treatment variable. If

assuming all relationships in Figure 2.2 are linear, one can analysize treatment effect T ,
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T Y

X

Figure 2.2: Causal diagram example as mediator analysis

T=Treatment variable; X=confounding variable; Y =Outcome variable;

X is confounding variable between T and Y ; also, T is mediator variable between X and Y

as the coefficient relating the mediator T to the outcome Y adjusted for the independent

variable X . Therefore, treatment effect β2 can be simply given through estimating

Y = β0 + β1X + β2T + ε. (2.2)

as mediator analysis (MacKinnon, 2000). However, when there are many variables in com-

plex moderator and non-linear relationships, it is dangerous to use regression functions

similar to Equation (2.2) to get βs and interprete them as effect size with p-values, because

these functions g may be mis-specified. In the next section, a machine learning alternative

to p-values is introduced to provide information of model fitting and prediction power as

well as performance under mis-specified model settings.

2.3 A Machine Learning Alternative to p-values

P-values are useful in causal inference. For example, if the outcome is survival and we

assume confounding structure in Figure 2.2 (as well as proportional hazards assumption

which will be discussed in the next section), we can fit a Cox regression as function g

in similar form as Equation (2.2) and detect causal effect through p-values on β2. The
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question here is, can we get inference from function g based on other statistics, instead

of p-values? This section presents a machine learning alternative to p-values in regression

settings. Note that p-values are still used in this dissertation but not for function g; I only

want to emphasize that when using p-values to detect causality, extra care must be used;

therefore, I recommend this machine learning alternative.

This approach, whose origins can be traced to machine learning, is based on the leave-

one-out bootstrap for prediction error. In machine learning this is called the out-of-bag

(OOB) error. To obtain the OOB error for a model, one draws a bootstrap sample and fits the

model to the in-sample data. The out-of-sample prediction error for the model is obtained

by calculating the prediction error for the model using the out-of-sample data. Repeating

and averaging yields the OOB error, which represents a robust cross-validated estimate

of the accuracy of the underlying model. By a simple modification to the bootstrap data

involving “noising up” a variable, the OOB method yields a variable importance (VIMP)

index, which directly measures how much a specific variable contributes to the prediction

precision of a model. VIMP provides a scientifically interpretable measure of the effect size

of a variable, we call the predictive effect size, that holds whether the researcher’s model is

correct or not, unlike the p-value whose calculation is based on the assumed correctness of

the model. We also discuss a marginal VIMP index, also easily calculated, which measures

the marginal effect of a variable, or what we call the discovery effect. The OOB procedure

can be applied to both parametric and nonparametric regression models and requires only

that the researcher can repeatedly fit their model to bootstrap and modified bootstrap data.

We illustrate this approach on a survival data set involving patients with systolic heart

failure and to a simulated survival data set where the model is incorrectly specified to

illustrate its robustness to model misspecification.
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2.3.1 Background

The issue of p-values has taken center stage in the media with many scientists expressing

grave concerns about their validity. “P values, the ’gold standard’ of statistical validity, are

not as reliable as many scientists assume”, is the leading assertion of the highly accessed

Nature article, “Scientific method: Statistical errors” (Nuzzo, 2014). Even more extreme is

the recent action of the journal of Basic and Applied Social Psychology (BASP), which an-

nounced it would no longer publish papers containing p-values. In explaining their decision

for this policy (Trafimow and Marks, 2015), the editors stated that hypothesis significance

testing procedures are invalid, and that p-values have become a crutch for scientists dealing

with weak data. These, and other highly visible discussions, so alarmed the American Sta-

tistical Association (ASA), that it recently issued a formal statement on p-values (Wasser-

stein and Lazar, 2016), the first time in its history it had ever issued a formal statement on

matters of statistical practice.

A big part of the problem is that researchers want the p-value to be something that

it was never designed for. At its heart, the p-value remains an awkward statistical con-

cept wrapped in a stifled language that is odds with these needs. Consider the following

language clarifying the p-value (some of these being taken from the ASA report):

1. A p-value is the probability of observing an equal or more extreme “event” than that

calculated from the data under the assumption of a specific hypothesis assuming a

pre-specified statistical model.

2. P-values only indicate how incompatible the data are with the pre-specified statistical

model and null hypothesis.

3. P-values are dimensionless and cannot be interpreted in terms of a scientific effect

size or the scientific importance of the result.

4. P-values do not provide a measure of evidence regarding the validity of the underly-
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ing assumed model.

We see the terminology of statistical significance, null hypotheses, and model assumptions

being used to explain the p-value. But researchers require a different type of language.

Researchers want to make context specific assertions about their findings; they especially

want a statistic that allows them to assert statements regarding scientific effect. Because

the p-value cannot do this, and because the terminology is confusing and stifling, it is no

wonder this leads to misuse and confusion.

Misinterpretation of the p-value is not the only issue. Another problem is verifying

correctness of the model under which the p-value is calculated. If model assumptions

do not hold, the p-value itself becomes statistically invalid. This is not an esoteric point.

Commonly used models such as linear regression, logistic regression, and Cox proportional

hazards can involve strong assumptions. Common practices such as fitting main effect

models without interactions, assuming linearity of variables, and invoking distributional

assumptions regarding the data, such as normality, can easily fail to hold. Moreover, the

functional relationship between attributes and outcome implicit in some of these models,

such as proportionality of hazards, may also fail to hold. Researchers rarely test for model

correctness, and even when they do, they invariably do so by considering goodness of fit.

But goodnesss of fit measures are notoriously unreliable for assessing the validity of a

model (Breiman, 2001a).

This section focuses on the use of p-values in the context of regression models. All

widely used statistical software provide p-value information when fitting regression mod-

els; typically p-values are given for the regression coefficients. These are provided in an

ANOVA table with each row of the table displays the regression coefficient estimate, β̂, for

a specific coefficient, β, an estimate of its standard error, σ̂β , and then finally the p-value of
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the coefficient, obtained typically by comparing a Z-statistic to a normal distribution:

Zobserved =
β̂

σ̂β
, p-value = P{Z ≥ |Zobserved|}.

The p-value for the regression coefficient represents the statistical significance of the test

of the null hypothesis H0: β = 0. In other words, it provides a means of assessing whether

a specific coefficient, in this case β, is zero. However, there is a subtle aspect to this where

confusion can take place. When considering this p-value, it is important to keep in mind

that its value is calculated not only under the null hypothesis of a zero coefficient value, but

also assuming that the model holds. Thus, technically speaking, the null hypothesis is not

just that the coefficient is zero, but is a collection of assorted assumptions, which should

probably read something like:

H0 :
{
β = 0, model holds, model assumptions hold (e.g. interactions not present)

}
.

If any of these assumptions fail to hold, then the p-value is technically invalid.

Given these concerns with the p-value, we suggest a different approach using a quan-

tity we call the variable importance (VIMP) index. Our VIMP index is based on variable

importance, an idea that originates from machine learning. One of its earliest examples can

be traced to Classification and Regression Trees (CART), where variable importance based

on surrogate splitting was used to rank variables (see Chapter 5 of Breiman et al. (1984)).

The idea was later refined for variable selection in random forest regression and classifica-

tion models by using prediction error (Breiman, 2001b,a). Extensions to random survival

forests were considered by Ishwaran et al. (2008). Our VIMP index uses the same idea as

these latter approaches, but recasts it within the p-value context. Like those methods, it

uses prediction error to assess the effect of a variable in a model. It replaces the statistical

significance of a p-value with the predictive importance of a variable. Most importantly,
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the VIMP index holds regardless of whether the model is true. This is because the index is

calculated using test data and is not based on a presupposed model being true as the p-value

does.

In statistics, effect size is a quantitative measure of the strength of a phenomenon,

which includes as examples: Cohen’s d (standard group mean difference); the correlation

between two variables; and relative risk. In regression models, effect size is measured by

the standardized β̂ coefficient. Since VIMP is also a measure of the quantitative strength

of a variable, we refer to its quantitative measure as predictive effect size to prevent readers

from confusing it with the traditional effect size. With a simple modification to the VIMP

procedure, we estimate another quantity we call marginal VIMP and refer to its quantitative

measure as the discovery effect size. This refers to the discovery contribution of a variable,

which will be explained in Section 4. An important aspect of both our procedures is that

they can be carried out using the same models the researcher is interested in studying.

Implementing them only requires the ability to resample the data, apply some modifications

to the data, and calculate prediction error. Thus they can easily be incorporated with most

existing statistical software procedures.

Section 2.3.2 outlines the VIMP index and provides a formal algorithmic formulation

(see Algorithm 1). The VIMP index is based on out-of-bag (OOB) estimation, which relies

on bootstrap sampling. These concepts are also discussed in Section 2.3.2. Section 2.3.3

illustrates the use of the VIMP index to a survival data set involving patients with systolic

heart failure with cardiopulmonary stress testing. We show how to use this value to rank

risk factors and assess their predictive effect sizes. In Section 2.3.4 we discuss the extension

to marginal VIMP (Algorithm 2)) and show how this can be used to estimate discovery

effect sizes in the systolic heart failure example. Section 2.3.5 studies how sample size (n)

effects VIMP, comparing this to p-values to show robustness of VIMP to n, then in Section

2.3.6 we use a synthetically constructed data set where the model is incorrectly specified
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to illustrate the robustness of VIMP in misspecified settings. We conclude the paper with a

discussion in Section 2.3.7.

2.3.2 OOB prediction error and VIMP

OOB estimation is a bootstrap technique for estimating the prediction error of a model.

While the phrase “out-of-bag” might be unfamiliar to readers, the technique has been

known for quite some time in the literature, appearing under various names and seemingly

different guises. In the statistical literature, the OOB estimator is refered to as the leave-

one-out bootstrap due to its connection to leave-one-out cross-validation (Efron and Tib-

shirani, 1997). See also the earlier paper by Efron (1983) where a similar idea is discussed.

It is also used in machine learning where it is refered to as OOB estimation (Breiman,

1998) due to its connections to the machine learning method, bagging (Breiman, 1996).

Calculating the OOB error begins with bootstrap sampling. A bootstrap sample is a

sample of the data obtained by sampling with replacement. Sampling by replacement cre-

ates replicated values and on average one can expect a bootstrap sample to contain only

63.2% of the original data; this data is refered to as in-sample (inbag) data. The remaining

37% of the data, which is out-of-sample, and called the OOB data, represents test data used

in the OOB calculation. Note that OOB data contains no replicated values. To calculate the

OOB error, one begins by fitting the model to the inbag data. Then, taking the OOB data,

and using it as test data, one calculates the prediction error for the model. This process is

repeated B times, where B is some sufficiently large number, say B = 1000. The OOB

error is obtained by averaging the B estimates of prediction error. Thus if Errb is the OOB

error for the bth sample, the OOB error rate is

Erroob =
1

B

B∑
b=1

Errb.
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See Figure 2.3 for an illustration of calculating OOB error.

b = 1 b = 2 . . . b = B

·

·
· · · ·

· · ·

Bootstrap Bootstrap

Fit inbag model Fit inbag model

OOB error OOB error

Err1 Err2 ErrB︸ ︷︷ ︸
Erroob =

Err1 + · · ·+ ErrB

B
=

1

B

B∑
b=1

Errb

Figure 2.3: Calculating the OOB prediction error for a model. Blue points depict inbag
sampled values, red points depict OOB values. Model is fit using inbag data and then tested
on OOB test data. Averaging the prediction error over the different bootstrap realizations
yields the OOB prediction error.

Calculating the VIMP index for a variable

The VIMP index for estimating the predictive effect size for a variable is obtained by a

slight modification of the above procedure. For concreteness, call the variable of interest

v and let Δv denote its VIMP index. To determine Δv we determine the VIMP index for

v over each bootstrap sample b, call this Δv,b, and average these values. Here is how Δv,b

is calculated. For a given bootstrap sample b, take the OOB data for v and “noise it up”.

Noising the data is intended to destroy the association between v and the outcome and is

a crucial step to determining variable importance. There are different ways to noise up
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the data, but the simplest is to permute v’s data (the OOB data for the other variables are

unaltered). Use the new data (with the noised up v data) to calculate the prediction error

for the model. Call this noised up prediction error Errv,b. The vimp index for the bootstrap

sample is

Δv,b = Errv,b − Errb.

The prediction error for the noised up data will increase if v has a real effect in the model.

Hence, comparing this prediction error to the original prediction error will yield a positive

vimp index Δv,b if v is predictive. The vimp index for v is obtained by averaging these

values over the bootstrap realizations:

Δv =
1

B

B∑
b=1

Δv,b =
1

B

B∑
b=1

[Errv,b − Errb] .

For the reasons discussed above, it follows that a large positive value indicates a variable

v that has a large test-validated effect size (predictive effect size). Algorithm 1 provides a

formal statement of this procedure.

Algorithm 1 VIMP index for a variable v
1: for b = 1, . . . , B do
2: Draw a bootstrap sample of the data.

3: Fit the model to the bootstrap data.

4: Calculate the prediction error, Errb, using the OOB data.

5: Noise up the OOB data for v.

6: Calculate the prediction error, Errv,b, using the noised up OOB data.

7: Calculate the boostrap VIMP index Δv,b = Errv,b − Errb
8: end for
9: Calculate the VIMP index by averaging: Δv =

∑B
b=1 Δv,b/B.

10: The OOB error for the model can also be obtained using Erroob =
∑B

b=1 Errb/B.

We make several remarks regarding the implementation of Algorithm 1.

1. As stated, the algorithm provides a VIMP index for a given variable v, but in practice
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one applies the same procedure for all variables in the model. The same bootstrap

samples are to be used when doing so. This is required because it ensures that the

VIMP index for each variable is always compared to the same value Errb.

2. Because all calculations are run independently of one another, Algorithm 1 can be

implemented using parallel processing. This makes the algorithm extremely fast and

scalable to big data settings. The most obvious way to parallelize the algorithm is on

the bootstrap sample. Thus, on a specific computing machine on a cluster, a single

bootstrap sample is drawn and Errb determined. Steps 3-7 are then run for each

variable in the model for the given bootstrap draw. Results from different computing

machines on the computing cluster are then averaged as in Steps 9 and 10.

3. As mentioned earlier, noising up a variable is typically done by permuting its data.

This approach is what is generaly used by nonparametric regression models. In the

case of parametric and semiparametric regression models (such as Cox regression),

in place of permutation noising up, the OOB data for the variable v is set to zero.

This is equivalent to setting the regression coefficient estimate for v to zero which is

the convenient way of implementing this procedure. Setting the coefficient to zero

is a special feature of parametric models that provides a more direct and convenient

way to noise up the data than permutation noising up used by nonparametric models.

4. As a side effect, the algorithm can also be used to return the OOB error rate for the

model, Erroob (see Step 10). This can be useful for assessing the effectiveness of the

model and identifying poorly constructed models.

5. Algorithm 1 requires being able to calculate prediction error. The type of prediction

error used will be context specific. For example in linear regression, prediction error

can be measured using mean-squared-error, or standardized mean-squared errror. In

classification problems, prediction error is typically defined by misclassification. In

survival problems, a common measure of prediction performance is the Harrell’s
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concordance index. Thus unlike the p-value, the interpretation of the VIMP index

will be context specific.

2.3.3 Risk factors for systolic heart failure

To illustrate VIMP, we consider a survival data set previously analyzed in Hsich et al.

(2011). The data involves 2231 patients with systolic heart failure who underwent car-

diopulmonary stress testing at the Cleveland Clinic. Of these 2231 patients, during a mean

follow-up of 5 years, 742 died. In total, 39 variables were measured for each patient includ-

ing baseline characteristics and exercise stress test results. Specific details regarding the

cohort, exclusion criteria, and methods for collecting stress test data are discussed in Hsich

et al. (2011).

We used Cox regression to fit the data using all cause mortality for the survival end-

point (as was used in the original analysis). Only linear variables were included in the

model (i.e. no attempt was made to fit non-linear effects). Prediction error was assessed

by the Harrell’s concordance index as described in Ishwaran et al. (2008). For improved

interpretation, prediction error was multiplied by 100. This is helpful because the resulting

VIMP becomes expressible in terms of a percentage. For example, a VIMP index of 5%

indicates a variable that improves by 5% the ability of the model to rank patients by their

risk. We should emphasize once again that VIMP is cross-validated and provides a measure

of predictive effect size.

Table 2.1 lists the results from the Cox regression analysis and from applying Algo-

rithm 1 with B = 1000 replications. The first column lists patient variables. The second

column with entry β̂ lists the corresponding coefficient estimates obtained from the Cox

regression of the original (non-bootstrapped) data. Column 3 is the p-value for the coeffi-

cient estimates of column 2. Column 4, β̂inbag, is the averaged coefficient estimates from

the B = 1000 bootstrap Cox regression models. Notice that column 4 agrees closely with
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Table 2.1: Results from analysis of systolic heart failure data.

Cox Regression VIMP Marginal

VIMP

Variable β̂ p-value β̂inbag Δβ Errstep Δmarg
β

Peak VO2 -0.06 0.002 -0.06 1.94 32.40 0.25

BUN 0.02 0.000 0.02 1.67 30.81 0.37

Exercise time 0.00 0.008 0.00 1.37 30.80 0.08

Male 0.47 0.000 0.47 0.52 30.01 0.37

beta-blocker -0.23 0.006 -0.23 0.30 29.34 0.16

Digoxin 0.36 0.000 0.36 0.30 29.00 0.22

Serum sodium -0.02 0.071 -0.02 0.20 28.93 0.07

Age 0.01 0.022 0.01 0.18 28.99 -0.03

Resting heart rate 0.01 0.058 0.01 0.14 28.93 0.04

Angiotensin receptor blocker 0.26 0.067 0.27 0.13 28.92 0.02

LVEF -0.01 0.079 -0.01 0.11 28.86 0.03

Aspirin -0.21 0.018 -0.21 0.11 28.83 0.03

Resting systolic blood pressure 0.00 0.158 0.00 0.07 28.83 0.00

Diabetes insulin treated 0.26 0.057 0.25 0.07 28.87 -0.02

Previous CABG 0.11 0.316 0.12 0.07 28.86 -0.02

Coronary artery disease 0.12 0.284 0.12 0.06 28.92 -0.04

Body mass index 0.00 0.800 0.00 0.00 28.96 -0.05

Potassium-sparing diuretics -0.14 0.134 -0.14 -0.03 28.97 -0.01

Previous MI 0.29 0.012 0.30 -0.03 29.02 -0.01

Thiazide diuretics 0.04 0.707 0.04 -0.04 29.07 -0.05

Peak respiratory exchange ratio 0.12 0.701 0.12 -0.04 29.12 -0.05

Statin -0.12 0.183 -0.13 -0.04 29.19 -0.07

Antiarrythmic 0.04 0.700 0.04 -0.04 29.25 -0.06

Diabetes noninsulin treated 0.01 0.930 0.00 -0.05 29.30 -0.06

Dihydropyridine 0.03 0.851 0.03 -0.05 29.35 -0.05

Serum glucose 0.00 0.486 0.00 -0.05 29.42 -0.07

Previous PCI -0.06 0.557 -0.06 -0.05 29.48 -0.05

ICD 0.04 0.676 0.03 -0.05 29.55 -0.07

Anticoagulation -0.01 0.933 -0.01 -0.06 29.61 -0.06

Pacemaker -0.02 0.851 -0.01 -0.06 29.67 -0.06

Current smoker 0.03 0.807 0.03 -0.06 29.74 -0.06

Nitrates -0.04 0.623 -0.04 -0.06 29.80 -0.06

Serum hemoglobin 0.00 0.923 0.01 -0.06 29.87 -0.07

Black 0.07 0.589 0.06 -0.07 29.95 -0.08

Nondihydropyridine -0.30 0.510 -0.51 -0.07 30.03 -0.08

Loop diuretics -0.07 0.541 -0.08 -0.07 30.09 -0.06

ACE inhibitor 0.10 0.371 0.11 -0.09 30.15 -0.06

Vasodilators -0.08 0.606 -0.07 -0.09 30.25 -0.09

Creatinine clearance 0.00 0.624 0.00 -0.11 30.31 -0.06
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column 2, which is to be expected if the number of iterations B is selected suitably large.

Researchers can in fact use the closeness of column 2 to column 4 in their analyses as a

way to assess if they have selected B appropriately large. Note that Table 2.1 has been

sorted in terms of the VIMP index; these values are provided in column 5 under the entry

Δβ . It is interesting to observe that the magnitude of VIMP does not always match the

corresponding p-value. For example, resting heart rate has a p-value of 6% which is very

close to the widely used 5% cutoff value used as evidence of an important scientific effect.

In contrast, however, its VIMP of 0.14% is relatively small compared with other variables.

For example, the top variable identified by Algorithm 1 is peak VO2 with a VIMP of 1.9%,

which is over 13 times larger.

In addition to peak VO2, Algorithm 1 identifies BUN and treadmill exercise time as

two additional variables having large VIMP indices. Interestingly, the ranking of these

three variables are identical to that in Hsich et al. (2011) obtained using a random survival

machine learning analysis. Following these three variables is an assortment of variables

with moderate VIMP: sex, use of beta-blockers, use of digoxin, serum sodium level, and

age of patient. Then there are variables with small but non-zero VIMP, starting with patient

resting heart rate, and terminating with presence of coronary artery disease. VIMP indices

become zero or negative for the remaining variables.

These latter variables, with zero or negative VIMP indices, can be viewed as “noisy”

variables which not only contribute no positive effect, but actually degrade model perfor-

mance. This can be seen by considering column 6 of Table 2.1, labeled as Errstep. This

column equals the OOB prediction error for each of the stepwise models ordered by VIMP.

Table 2.2 lists the stepwise models that were considered:

Table 2.1 shows that Errstep decreases for models with positive VIMP variables, but

rises once models begin to include noisy variables with zero or negative VIMP. Note that
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Table 2.2: Stepwise models used in calculating Errstep.

Model Number Stepwise Model

1 Model using the top variable only, {peak VO2}
2 Model using top two variables, {peak VO2, BUN}
3 Model using top three variables, {peak VO2, BUN, exercise time}
...

...

39 Model using all 39 variables

because prediction error will be optimistic for models based on ranked variables, we reduce

bias by calculating Errstep using the same bootstrap samples used by Algorithm 1. Thus,

the value 30.31 in the last row of column Errstep, corresponding to fitting the entire model,

coincides exactly with the OOB model prediction error obtained using Algorithm 1.

2.3.4 Marginal VIMP

Now we explain the meaning of the column entry Δmarg
β in Table 2.1. To understand this, we

return to the stepwise error, Errstep, listed in the table. Recall that Errstep measures the OOB

prediction error for a specific stepwise model. Relative to its previous entry, it estimates the

effect of a variable when it is added to the current model. To be concrete, consider Errstep

for the third stepwise model:

Model containing the top three variables, {peak VO2, BUN, exercise time}.

The value for Errstep is 30.80. Now since the value for Errstep for the second stepwise model

(using the first two variables) is 30.81, we can conclude that the predictive effect size for

adding exercise time is 0.01 (30.81 minus 30.80). This is much smaller than the VIMP

index, Δβ , for exercise time which equals 1.37. These values differ because the stepwise
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error rate estimates the effect of adding treadmill exercise time to the model with Peak

VO2 and BUN. We call this the discovery effect size of the variable. The discovery effect

measures a different predictive effect than the VIMP index. For exercise time, the VIMP

index estimates the predictive effect size of exercise time in the model using all variables

(including exercise time).

The stepwise error rate we constructed only estimates discovery effects for the specific

stepwise models considered. It would be more helpful to calculate the discovery effect of a

variable compared to the model containing all variables except that variable. This is what

we call the marginal vimp, Δmarg
β . Table 2.3 summarizes these concepts.

Table 2.3: Difference between VIMP and marginal VIMP.

VIMP is calculated through noising up a variable.

Marginal VIMP is calculated through removing a variable.

Note that removing a variable from the model will change the coefficients of other
variables, while noising up a variable will not change those.

The marginal VIMP is easily calculated by a simple modification to Algorithm 1. In

place of noising up a variable v, a second model is fit to the bootstrap data, but with v

removed. The OOB error for this model is compared to the OOB error for the full model

containing all variables. Averaging these values over the bootstrap realizations yields Δmarg
v .

See Algorithm 2 for a formal description of this procedure.

Comparing the marginal VIMP of column 7 to the VIMP of column 5, we observe

some very interesting differences. A first observation is that marginal VIMP is generally

much smaller than VIMP. We can conclude that the discovery effect size is a conservative

measure, as we would expect given the large number of variables in our model. Second,
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Algorithm 2 Marginal VIMP for a variable v
1: for b = 1, . . . , B do
2: Draw a bootstrap sample of the data.

3: Fit the model to the bootstrap data and calculate its prediction error, Errb, using the

OOB data.

4: Fit a second model, but without variable v, and calculate its predictiction error,

Err
marg
v,b using the OOB data.

5: end for
6: Calculate the marginal VIMP by averaging: Δmarg

v =
∑B

b=1

[
Err

marg
v,b − Errb

]
/B.

as expected, the discovery effect of exercise time is substantially smaller than its VIMP.

Third, there is a small collection of variables whose discovery effect is relatively large

compared to their VIMP. The most interesting is sex, which has the largest discovery effect

among all variables (being tied with BUN). The explanation for this is that adding sex

to the model supplies new information not provided by other variables. Marginal VIMP

is in some sense a statement about correlation. For example, the correlation of exercise

time with peak VO2 is 0.87, whereas the correlation of BUN with peak VO2 is -0.40.

Thus when peak VO2 is included in the model, BUN is able to have a high discovery

effect, while exercise time cannot. Differences between marginal VIMP and VIMP indices

are conveniently summarized in Figure 2.4. For example, the right-hand plot displays the

ranking of variables by the two methods. There is some overlap in the top variables (points

in lower left hand side), but generally we see important differences.

2.3.5 Robustness of VIMP to the sample size

Here we demonstrate the robustness of VIMP to the sample size (n). We implemented

the same procedures as before to the systolic heart failure data, but this time using only a

fraction of the data. We used 10%, 25%, 50%, and 75% of the data. That is we subsampled

the data without replacement, drawing a data set with sample size Fn, where F was the

desired fraction of the data. This process was repeated 500 times independently. For each
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Figure 2.4: Differences between marginal VIMP and the VIMP index for systolic heart
failure data. Left-hand figure displays the two values plotted against each other. Right-
hand figure compares the ranking of variables by the two methods.

data set, we saved the p-values and VIMP indices for all variables. Figure 2.5 displays the

logarithm of the p-values from the experiment (large negative values correspond to near

zero p-values). Figure 2.6 displays the VIMP indices. What is most noticeable from Fig-

ure 2.6 is that VIMP indices are informative even in the extremely low sample size setting

of 10%. For example, VIMP interquartile values (the lower and upper ends of the boxplot)

are above zero for peak VO2, BUN, and treadmill exercise time, showing that VIMP is

able to consistently identify the top three variables even with limited data. In contrast, in

Figure 2.5 for the low sample setting of 10%, no variable had a median log p-value below

the threshold of log(0.05); showing that no variable met the 5% level of significance on

average. Furthermore, even with 75% of the data, the upper end of the boxplot for exer-

cise time is still above the threshold, showing its significance is questionable. These results

demonstrate the sensitivity of p-values to sample size in contrast to the robustness of VIMP.
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Figure 2.5: Logarithm of p-value as a function of fraction of sample size for systolic heart
failure data (large negative values correspond to near zero p-values). Values are calculated
using 500 independently subsampled data sets. Horizontal line is log(0.05), the typical
threshold used to identify a significant variable.
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Figure 2.6: Subsampled data is the same as Figure 2.5 but where VIMP is now reported.
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2.3.6 Misspecified model

For our second illustration we use a simulated survival data set. We use this to show the ro-

bustness of VIMP under model misspecification. For our simulation, we sampled n = 1000

values from a Cox regression model with five variables. The first two variables are “psa”

and “tumor volume” and represent variables associated with the survival outcome. The

remaining three variables are noise variables with no relationship to the outcome. These

are calledX1, X2, X3. The variable psa has a linear main effect, but tumor volume has both

a linear and non-linear term. The true regression coefficient for psa is 0.05 and the coeffi-

cient for the linear term in tumor volume is 0.01. A censoring rate of approximately 70%

was used. The log of the hazard function used in our simulation is given in the left panel

of Figure 2.7. Mathematically, our log-hazard function assumes the following function

log(h(t)) = α0 + 0.05× psa + 0.01× tumor volume + ψ(tumor volume)

where ψ(x) = 0.04x2 − 0.005x3 is a polyomial function with quadratic and cubic terms.

The right panel of Figure 2.7 displays the log-hazard for the misspecified model that does

not include the non-linear term for tumor volume.

We first fit a Cox regression model to the data using only linear variables as one might

typically do. Following this, Algorithms 1 and 2 were applied with B = 1000. The entire

procedure was then repeated M = 1000 times. Each of these Monte Carlo runs consisted

of simulating a new data set, fitting a Cox regression model to this simulated data, and

running Algorithms 1 and 2. The results are summarized in Table 2.4. All reported values

are averaged over the M = 1000 Monte Carlo experiments.

Table 2.4 shows that the p-value has no difficulty in identifying the strong effect of

psa, which is correctly specified in the model. However, the p-value for tumor volume is
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Figure 2.7: Log-hazard function from Cox simulation example. Left figure displays the
true log-hazard function which includes the non-linear term for tumor volume. Right figure
displays the log-hazard function assuming linear variables only.

0.267 which indicates a non-significant effect. The p-value tests whether this coefficient is

zero, assuming the model is true, but the problem is that the fitted model is misspecified.

The estimated Cox regression model inflates the coefficient for tumor volume in a negative

direction (estimated value of -0.03, but true value is 0.01) in an attempt to compensate

for the non-linear effect that was excluded from the model. This leads to the invalid p-

value. In contrast, both the VIMP and marginal VIMP values for tumor volume are positive.

Although these values are substantially smaller than the values for psa, VIMP is still able to

identify an predictive effect size associated with tumor volume. Once again, this is possible

because VIMP bases its estimation on test data and not a presumed model which can be

incorrect. Also, notice that all three noise variables are correctly identified as uniformative.

All have negative VIMP values.

Typically, a standard analysis would end after looking at the p-values in Table 2.4.

However, a researcher with access to the entire table, might be suspicious of the nega-
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Table 2.4: Results from analysis of simulated Cox regression data set. The model is mis-
specified by failing to include the non-linear term for tumor volume.

β̂ p-value β̂inbag Δβ Δmarg
β

psa 0.05 0.001 0.05 6.32 6.34

tumor volume -0.03 0.267 -0.03 0.14 0.15

X1 0.00 0.490 0.00 -0.25 -0.25

X2 0.00 0.486 0.00 -0.25 -0.25

X3 0.00 0.493 0.00 -0.27 -0.27

The overall OOB model error is 43%.

tive coefficient estimate for tumor volume, and they would be alerted by its small positive

VIMP. This combined with the high OOB model error (equal to 43%) would alert them to

consider more sophisticated modeling. This is easily done using standard statistical meth-

ods. Here we use B-splines (Eilers and Marx, 1996) to add non-linearity to tumor volume.

This expands the design matrix for the Cox regression model to include additional columns

for the the B-spline expansion of tumor volume. When noising up tumor volume all of

these B-spline columns are noised up simultaneously (i.e. their coefficient estimates are set

to zero). The extensions to Algorithms 1 and 2 are straightforward.

Table 2.5: Results from Cox regression simulation using a B-spline to model non-linearity
in tumor volume.

Δβ Δmarg
β

psa 4.20 4.23

tumor volume 2.27 2.31

X1 -0.20 -0.20

X2 -0.20 -0.20

X3 -0.21 -0.21

The overall OOB model error is 40%.

The results from the B-spline analysis are displayed in Table 2.5. As before, the entire

procedure was repeated M = 1000 times, with values averaged over the Monte Carlo runs.
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Notice the large values of VIMP for tumor volume. The overall model performance has

also improved to 40%. Overall, results have improved substantially.

2.3.7 Discussion

It seems questionable that the p-value can continue to meet the needs of scientists. It

does not provide an interpretable scientific effect size that researchers desire and it is valid

only if the underlying model holds, which can often be questionable given the restrictive

assumptions often used with traditional modeling. In this section, I introduced VIMP as an

alternative approach. VIMP provides an interpretable measure of effect size that is robust to

model misspecification. It uses prediction error based on out-of-sample data and replaces

statistical significance with predictive importance. The VIMP framework is feasible to all

kinds of models including not only parametric models, such as those considered here, but

also non-parametric models such as those used in machine learning approaches.

We discussed two types of VIMP measures: the VIMP index and the marginal VIMP.

The scientific application will dictate which of these is more suitable. VIMP indices are

appropriate in settings where variables for the model are already established and the goal

is to identify the predictive effect size. For example, if several genetic markers are already

identified as a genetic cause for coronary heart disease risk, VIMP can provide a rank for

these and estimate the magnitude each marker plays in the prediction for the outcome.

Marginal VIMP is appropriate when the goal is new scientific discovery. For instance, if a

researcher is proposing to add a new genetic marker for evaluating coronary heart disease

risk, marginal VIMP can yield a discovery effect size for how much the new proposed

marker adds to previous risk models.

From a statistical perspective, VIMP idices are an OOB alternative to the regression

coefficient p-value. However, what VIMP measures about a variable can be very flexible.

It may be a linear effect, or quite easily a non-linear effect, such as modeled using B-splines.
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An important feature is that degrees of freedom and other messy details required with p-

values when dealing with complex modeling are never an issue with VIMP. Marginal VIMP

is an OOB analog to the likelihood-ratio test. In statistics, likelihood-ratio tests compare

the goodness-of-fit of two models, one of which (the null model with certain variables

removed) is a special case of the other (the alternative model with all variables included).

Marginal VIMP compares the prediction precision of these two scenarios.

Because both VIMP and marginal VIMP are measures of predictive importance, their

values are standardized to the measure of prediction performance used. This makes it

possible to compare values across different data sets. For example, a 0.05 VIMP value

for two different variables from two different survival datasets is comparable—both imply

a 5% contribution to the concordance index. Another feature which we touched upon

briefly in our B-spline example is the ability to use VIMP to measure the effect of groups

of variables. In our B-spline example, the cluster of variables used were the B-spline

contributions to tumor volume, and were combined together to give an overall estimate of

the effect of tumor volume. One could easily extend this to calculate cluster-VIMP as a

better sense of the importance of a highly correlated group of variables.

2.4 Checking proportional hazards assumption using RF

Use T to denote the response variable, since the response is usually the time until an event.

Define survival function, S(t), as

S(t) = P{T > t} = 1− F (t),

where F (t) is the cumulative distribution function for T . If the event is death, S(t) is the

probability that death occurs after time t, or the probability that the subject will survive at
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least until time t. All subjects survive at least to time zero, so S(0) = 1. The accumulated

risk up until time t is cumulative hazard function, denoted by Λ(t). The hazard at time t,

λ(t), is related to the probability that the event will occur in a small interval around t, given

that the event has not occurred before time t. λ(t) is called the hazard function, or the force

of mortality, or instantaneous event (death, failure) rate.

λ(t) = limu→0
P{t < T ≤ t+ u|T > t}

u
,

which becomes

λ(t) = limu→0
P{t < T ≤ t+ u}/P{T > t}

u

= limu→0
[F (t+ u)− F (t)] /u

S(t)

=
[F (t+ u)− F (t)]

S(t)

=
∂F (t)/∂t

S(t)

=
f(t)

S(t)

= −∂logS(t)

∂t
,

where f(t) is the probability density function of T evaluated at t. The integral of λ(t) gives:

Λ(t) =

∫ t

0

λ(v)dv = −logS(t) and S(t) = exp
[− Λ(t)

]
.

To investigate ITE, one has to relate S(t) with all the covariates X. The form of the true

population survival distribution function S(t) is almost always unknown. For S(t|x), λ(t)
is the key to explore mechanism of survival, and the most widely used survival regression
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specification is to allow the hazard function λ(t) to be multiplied by exp(Xβ):

λ(t|X) = λ(t)exp(Xβ). (2.3)

λ(t), sometimes called an underlying hazard function or a hazard function for a standard

subject with Xβ = 0, can be left completely unspecified without sacrificing the ability to

estimate β by using Cox’s semi-parametric proportional hazards (PH) model. Regression

formulation (2.3) is called PH model, which generates:

S(t|X) = S(t)exp(Xβ). (2.4)

To interprete β, equation (2.3) suggests exp(βi) as hazard ratio in unite change of in Xi:

X∗ : X hazard ratio = λ(t)exp(X∗β)/λ(t)exp(Xβ)

= exp(X∗β)/exp(Xβ) = exp
[
(X∗ −X)βi]

= exp(βi),

(2.5)

where X∗ and X is the same except in the ith dimension X∗
i −Xi = 1.

One can also use treatment indicator variable as one of the covariates in X and inter-

prete ATE to be exp(β) as hazard ratio after matching treatment group and control group

on propensity score or raw observed variables. Whenever Cox regression model is used,

checking PH assumption is essential.

This section is about how to make sure Equation (2.3) is true. Note that PH assumption

has to hold for each Xi. Let h(t|x) = log{−log [S(t|x)]}, Equation (2.4) gives:

h(t|x) = xβ + log{−log [S(t)]}

= xβ + log [Λ(t)] .
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For t1 �= t2,

h(t1|x)− h(t2|x) = log [Λ(t1)]− log [Λ(t2)] (2.6)

holds for each dimension Xi. Define distance dxi
(t1, t2) = h(t1|xi) − h(t2|xi). From

Equation (2.6),

dxi
(t1, t2) is constant for any xi ∈ Xi. (2.7)

In other words, checking PH assumption for Xi is to check equal distance between log-log

conditional survival curve S(t|Xi).

I will use the partial plot from Random Survival Forest (Ishwaran et al., 2008; Ishwaran

and Kogalur, 2017) to get conditional survival S(t|Xi). It plots the marginal effect of

an x variable on the class probability (in classification problem), response (in regression

problem), mortality (in survival problem), or the expected years lost (in competing risk

problem) from a random forest analysis after adjusting for other variables. The partial plot

of the random forest model from Section 2.3 is demonstrated in Figure 2.8. The vertical

axis on the partial plot is −log(−log(S(t|Xi))) across different time. According to the

defination of proportional hazards assumption, lines of different time should be paralell.

Formally, to check PH assumption in Xi, randomly choose M pairs of

time points {(t11, t12), . . . , (tm1, tm2), . . . , (tM1, tM2)} and randomly choose N points

{x1 . . . xj . . . xN} in Xi. M × N distances dm,j are calculated through dm,j =

log{−log [S(tm1|xj)]} − log{−log [S(tm2|xj)]} for xj ∈ Xi, j = 1, . . . , N and m =

1, . . . ,M . Define em,j = dm,j − dm,·, where dm,· = 1
N

∑N
j=1 dm,j , and em,j can be tested

through Sign test: let W be the number of sign “+” for which em,j > 0; then W follows a

binomial distribution

W ∼ B(M ×N, 0.5).

I chose three variables from the survival data in Section 2.3, made the partial plot in Figure

2.8 and used Sign test for checking PH assumption in Table 2.6.
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Table 2.6: PH assumption checking for survial data in Section 2.3.

Variable p-value 95% LL 95% UL PH

Peak VO2 0.39 0.36 0.41 UnSatisfied

beta-blocker 0.51 0.40 0.62 Satisfied

Potassium-sparing diuretics 0.51 0.40 0.62 Satisfied

Note: 95% LL=low limit for 95% confidence interval of p value; 95% UL=upper limit for 95% confidence

interval of p value. If the 95% confidence interval of p value from Sign test covers 0.5, the PH assumption is

satisfied.
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Figure 2.8: Partial plots for survial data in Section 2.3. Dash line displays categorical

variable and solid line displays continuous variable.



Chapter 3

RF methods for estimating individual
treatment effects
This chapter describes several RF methods used for estimating the ITE. Each method can

be considered as a form of g in equation (1.6). Note that in equation (1.6), treatment

variable T is considered as fixed; therefore, each of the following method provides a direct

means for estimating the ITE without making use of the propensity score. As with models

incorporating the propensity score, these methods will account for confounding as long as

all confounding factors are observed and included in the feature set. Here I describe the

proposed RF methods for estimating the ITE. The methods considered in this dissertation

are as follows:

1. Virtual twins (VT).

2. Virtual twins interaction (VT-I).

3. Counterfactual RF (CF).

4. Counterfactual synthetic RF (synCF).

5. Bivariate RF (bivariate).

6. Honest RF (honest RF).

Virtual twins is the original method proposed by Foster et al. (2011) mentioned ear-

lier. We also consider an extension of the method, called virtual twins interaction, which

includes forced interactions in the design matrix for more adaptivity. Forcing treatment

48
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interactions for adaptivity may have a limited ceiling, which is why we propose the coun-

terfactual RF method. In this method we dispense with interactions and instead fit separate

forests to each of the treatment groups. Counterfactual synthetic RF uses this same idea,

but uses synthetic forests in place of Breiman forests, which is expected to further improve

adaptivity. Thus, this method, and the previous RF methods, are all proposed enhance-

ments to the original virtual twins method. All of these share the common feature that they

provide a direct estimate for the ITE by estimating the regression surface of the outcome.

This is in contrast to our other proposed procedure, bivariate RF, which takes a missing

data approach to the problem. There has been much interest in the literature in viewing

causual effect analysis as a missing data problem (Ghosh et al., 2015). Thus, we propose

here a novel bivariate imputation approach using RF. In the following sections we provide

more details about each of the above methods.

3.1 Virtual twins

Virtual Twins model uses a regular Breiman RF as function g in equation (1.6) and get

Yx(1) = g(1,x, εY ) and Yx(0) = g(0,x, εY ). Figure 3.1 shows the framework of virtual

twins RF approach. Foster et al. (2011) proposed a Virtual Twins (VT) approach for esti-

Units Potential Outcomes

Treatment Control

Treatment Effects

1 ̂Y1(1) ̂Y1(0) ̂Y1(1) − ̂Y1(0)

.

.

.

.

.

.

.

.

.

.

.

.

i ̂Yi(1) ̂Yi(0) ̂Yi(1) − ̂Yi(0)

.

.

.

.

.

.

.

.

.

.

.

.

N ̂YN (1) ̂YN (0) ̂YN (1) − ̂YN (0)

Training data

Units Y T X1. . .XN

1
.
.
.

.

.

.
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.

.

.

.

.

N

RANDOM FOREST

Figure 3.1: Illustration of virtual twins approach.
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mating counterfactual outcomes. In this approach, RF is used to regress Yi against (Xi, Ti).

To obtain a counterfactual estimate for an individual i, one creates a VT data point, simi-

lar in all regards to the original data point (Xi, Ti) for i, but with the observed treatment

Ti replaced with the counterfactual treatment 1 − Ti. Given an individual i with Ti = 1,

one obtains the RF predicted value Ŷi(1) by running i’s unaltered data down the forest. To

obtain i’s counterfactual estimate, one runs the altered (Xi, 1−Ti) = (Xi, 0) down the for-

est to obtain the counterfactual estimate Ŷi(0). The counterfactual ITE estimate is defined

as Ŷi(1) − Ŷi(0). A similar argument is applied when Ti = 0. If ŶV T (x, T ) denotes the

predicted value for (x, T ) from the VT forest, the VT counterfactual estimate for τ(x) is

τ̂V T (x) = ŶV T (x, 1)− ŶV T (x, 0).

As noted by Foster et al. (2011), the VT approach can be improved by manually includ-

ing treatment interactions in the design matrix. Thus, one runs a RF regression with Yi

regressed against (Xi, Ti,XiTi). The inclusion of the pairwise interactions XiTi is not

conceptually necessary for VT, but was observed to improve results. τ̂V T−I(x) denotes

the ITE estimate under this modified VT interaction model. Figure 3.2 demonstrates the

framework of virtual twins interaction approach.

Units Potential Outcomes

Treatment Control

Treatment Effects
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.
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Training data
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1
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N
1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

N

RANDOM FOREST

Figure 3.2: Illustration of virtual twins interaction approach.
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When implementing the above procedures, out-of-bag (OOB) estimates is used when-

ever possible. Original experimentation with in-sample (in bag) estimates revealed they

led to poorer performance due to increased variance. The advantage of OOB estimates

is not made very clear in the RF literature and it is worth emphasizing this point here as

readers may be unaware of this important distinction. OOB refers to out-of-sample (cross-

validated) estimates and are helpful in reducing the variance of a RF estimator. Each tree

in a forest is constructed from a bootstrap sample which uses approximately 63% of the

data. The remaining 37% of the data is called OOB and are used to calculate an OOB

predicted value for a case. The OOB predicted value is defined as the predicted value for

a case using only those trees where the case is OOB (for example if 1000 trees are grown,

approximately 370 are used). To illustrate how this applies to VT, suppose that case x is

assigned treatment T = 1. Let Ŷ ∗
V T (x, T ) denote the OOB predicted value for VT (x, T ).

The OOB counterfactual estimate for τ(x) is

τ̂V T (x) = Ŷ ∗
V T (x, 1)− ŶV T (x, 0).

Note that ŶV T (x, T ) is not OOB. This is because (x, 0) is a new data point and technically

speaking cannot have an OOB predicted value as the observation is not even in the training

data. In a likewise fashion, if x were assigned treatment T = 0, the OOB estimate is

τ̂V T (x) = ŶV T (x, 1)− Ŷ ∗
V T (x, 0).

OOB counterfactual estimates for τ̂V T−I(x) are defined analogously.
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Units Potential Outcomes

Treatment Control

Treatment Effects
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Figure 3.3: Illustration of Out-of-Bag estimates in virtual twins approach.

3.2 Counterfactual RF
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Training data: T=0

Units Y T X1. . .XN
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RANDOM FOREST (0)

Figure 3.4: Illustration of Counterfactual RF approach.

So far g in equation (1.6) is in the same form between (x, y, T = 1) and (x, y, T = 0);

another thought is setting up g as a step function as g1 for T = 1 and g0 for T = 0:

Y = g(T,X, εY ) =

⎧⎪⎪⎨
⎪⎪⎩
g0(X, εY 0) T = 0

g1(X, εY 1) T = 1

, (3.1)

which is the idea of counterfactual RF. In an important extension to τ̂V T−I , rather than

fitting a single forest with forced treatment interactions, we instead fit a separate forest to

each treatment group, shown in Figure 3.4. Doing so allows for much greater adaptivity to
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differences between the two treatment groups. Forests CF1 and CF0 are fit separately to

data {(Xi, Yi) : Ti = 1} and {(Xi, Yi) : Ti = 1}, respectively. To obtain a counterfactual

ITE estimate, each data point is run down its natural forest, as well as its counterfactual

forest. If ŶCF,j(x, T ) denotes the predicted value for (x, T ) from CFj , for j = 0, 1, the

counterfactual ITE estimate is

τ̂CF (x) = ŶCF,1(x, 1)− ŶCF,0(x, 0).

This modification to VT was mentioned briefly in the paper by Foster et al. (2011) although

not implemented. A related idea was used by Dasgupta et al. (2014) to estimate conditional

odds ratios by fitting separate RF to different exposure groups.

We note that just as with VT estimates, OOB values are utilized whenever possible to

improve stability of estimated values. Thus, if x is assigned treatment T = 1, the OOB

ITE estimate is

τ̂CF (x) = Ŷ ∗
CF,1(x, 1)− ŶCF,0(x, 0).

where Ŷ ∗
CF,1(x, 1) is the OOB predicted value for (x, 1). Likewise, if x is assigned treat-

ment T = 0, the OOB estimate is

τ̂CF (x) = ŶCF,1(x, 1)− Ŷ ∗
CF,0(x, 0).

3.3 Counterfactual synthetic RF

An substiution of Breiman RF as g0 and g1 in equation (1.6) is synthetic RF. In a modifi-

cation to the above approach, Breiman RF regression used for the prediction ŶCF,j(x, T )

is replaced by with synthetic forest regression using synthetic forests (Ishwaran and Mal-

ley, 2014). The latter are a new type of forest designed to improve prediction performance
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Figure 3.5: Illustration of Counterfactual synthetic RF approach.

of RF. Using a collection of Breiman forests (called base learners) grown under different

tuning parameters, each generating a predicted value called a synthetic feature, a synthetic

forest is defined as a secondary forest calculated using the new input synthetic features,

along with all the original features. This process is shown in Figure 3.5. Typically, the base

learners used by synthetic forests are Breiman forests grown under different nodesize and

mtry parameters. The latter are tuning parameters used in building a Breiman forest. In

RF, prior to splitting a tree node, a random subset of mtry variables are chosen from the

original variables. Only these randomly selected variables are used for splitting the node.

Splitting is applied recursively and the tree grown as deeply as possible while maintaining

a sample size condition that each terminal node contains a minimum of nodesize cases.

The two tuning parameters mtry and nodesize are fundamental to the performance of RF.

Synthetic forests exploits this and uses RF base learners grown under different mtry and

nodesize parameter values. To distinguish the proposed synthetic forest method from the

counterfactual approach described above, we use the abbreviation synCF and denote its

ITE estimate by τ̂synCF (x):

τ̂synCF (x) = ŶsynCF,1(x, 1)− Ŷ ∗
synCF,0(x, 0).
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where ŶsynCF,j(x, T ) denotes the predicted value for (x, T ) from the synthetic RF grown

using data {(Xi, Yi) : Ti = j} for j = 0, 1. As before, OOB estimation was used whenever

possible. In particular, there are great efforts to ensure that bootstrap samples were held

fixed throughtout in constructing synthetic features and the synthetic forest calculated from

these features. This was done to ensure a coherent definition of being out-of-sample.

3.4 Bivariate imputation method

Another modification for g in equation (1.6) is

Y = g(X, εY),

where T is deleted and used for index of bivariate outcome Y = [Y (0), Y (1)], and g is

served as a imputation function for unobserved Y (0) or Y (1). This is a new bivariate

approach making use of bivariate RF counterfactuals. For each individual i, we assume

the existence of bivariate outcomes under the two treatment groups. One of these is the

observed Yi under the assigned treatment Ti, the other is the unobserved Yi under the coun-

terfactual treatment 1− T i. This latter value is assumed to be missing. To determine these

missing outcomes we impute the data by using unsupervised RF imputation (Tang and Ish-

waran, 2017; Ishwaran and Kogalur, 2017). Data used includes the bivariate Yi outcome

(one of these being missing for each i) in addition to the covariate Xi. In unsupervised

RF imputation, tree splitting is implemented without assuming an outcome value. As in

supervised RF, mtry variables are selected at random. However, for each of these, a ran-

dom subset of ytry variables are selected and defined as the multivariate pseudo-responses.

A multivariate composite splitting rule of dimension ytry is then applied to each of the

mtry multivariate regression problems and the node split on the variable leading to the best
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split (Ishwaran and Kogalur, 2017). Using the imputed data obtained from unsupervised

imputation, we define a bivariate Yi for each i by using the observed Yi and the imputed

potential outcome Yi associated with the counterfactual treatment. This yields the bivariate

counterfactual estimate

τ̂bivariate(x) = Ŷbivariate,1(x)− Ŷbivariate,0(x).

Note that OOB values are not utilized in this approach.

3.5 Honest RF
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Use the remaining 50%
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Figure 3.6: Illustration of honest RF approach.

Another substiution of Breiman RF is honest RF; however, instead of being g in equa-

tion (1.6), honest RF is more like a matching technique in potential outcome approach.

Honest RF is not targeted in Y , but in treatment difference within a node: each node here

is consider as a matched group, match based on raw observed variables. The honest causal

procedure is described in Procedure 1 of Wager and Athey (2017). A RF is run by regress-

ing Yi on (Xi, Ti), but using only a randomly selected subset of 50% of the data. When

fitting RF to this training data, a modified regression splitting rule.is used. Rather than



57

splitting tree nodes by maximizing the node variance, honest RF instead uses a splitting

rule which maximizes the treatment difference within a node (see Procedure 1 and Remark

1 in Wager and Athey, 2017). Once the forest is grown, the terminal nodes of the training

forest are repopulated by replacing the training Y with the Y values from the data that

was held out. The purpose of this hold out data is to provide honest estimates and is akin

to the role played by the OOB data used in our previous procedures. The difference be-

tween the hold out Y values under the two treatment groups is determined for each terminal

node and averaged over the forest. This forest averaged value represents the honest forest

ITE estimate. Figure 3.6 shows the framework of honest RF. We denote this estimate by

τ̂honestRF (x).

3.6 Model consistency and convergence of RF

As discussed in Section 2.2, using RF as counterfactual approach requires model consis-

tency. Although previous research already proved consistency of RF (Biau et al., 2008,

2016; Scornet et al., 2015; Ueda and Nakano, 1996; Wager and Guenther, 2015), discus-

sions are addressed most from the aspect of trees, instead of forest. In this section, I will

firstly discuss why ensemble works as increasing learner number and how sample size plays

a role. Then I will re-discuss the consistency of RF as a kernel method. Another research

question here I want to answer is that since counterfactual RF splits the data, is it doomed

to lose efficiency? The answer is “No” and a simulation will be provided at the end of this

section to show that splitting the data sometimes can enhance prediction performance.

3.6.1 Convergence properties in classifier ensemble

Consider data (X, Y ) from a two class problem where Y ∈ {0, 1} is the outcome and X

denotes the p-dimensional feature. It is assumed that (X, Y ) is sampled from some distri-
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bution P0. Denote the learning data by L = {(X1, Y1), . . . , (Xn, Yn)} where (Xi, Yi) are

i.i.d. P0. Using the learning data L , grow B base learners (for example trees) T1, . . . , TB

with outputs 0 < Tb(X) < 1. Define Cb(X) = 1{Tb(X)>1/2} to be the bth classifier based on

the bth learner. The ensemble classifier is defined as

Ce
B(X) = 1{∑B

b=1 Cb(X)>B/2}.

In other words, the ensemble classifies a case as 1 if the majority of the learners do, other-

wise it classifies the case as 0.

The misclassification error for the ensemble can be made exponentially small with in-

creasing B under certain assumptions. We begin by introducing two assumptions:

(A1) T1, T2, . . . , TB are i.i.d. P.

(A2) π1 = P{Tb(X) > 1
2
|Y = 0} < 1

2
and π2 = P{Tb(X) ≤ 1

2
|Y = 1} < 1

2
.

Assumption (A1) requires the base learners to be independently constructed using the same

learning instructions. Assumption (A2) requires the conditional misclassification error for

each class to be bounded above by 1/2. This is a very minimal assumption and basically

requires only that each base learner is better than flipping a fair coin. However, as we will

see shortly, this condition is not as trivial as it seems since the learner has to perform well

in the whole sample space.

Remark. It is worth making a technical remark regarding the probability P used in the

assumptions above. In (A2), this P involves the joint measure over (X, Y ) (which has

distribution P0) and the distribution for the learning data used to construct the learners.

In (A1), P refers just to the learning data distribution. In general, when the integration

involves quantities other than P0 we shall use the generic symbol P.
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We now prove the misclassification error converges to zero exponentially fast. Begin

by noting that the misclassification error for Ce
B is

P{Ce
B(X) �= Y } = P{Ce

B(X) = 1, Y = 0}+ P{Ce
B(X) = 0, Y = 1}.

Consider the first term on the right-hand side. Define Zb(X) = 1{Tb(X)>1/2}. Under as-

sumption (A1),

Zb(X)|(X = x, Y = 0)
iid∼ Bernoulli(π1(x)), where π1(x) = P

{
Tb(x) >

1

2
|Y = 0

}
.

It follows that

P{Ce
B(X) = 1, Y = 0}

= P

{
B∑
b=1

Cb(X) > B/2, Y = 0

}

= P

{
B∑
b=1

1{Tb(X) > 1/2} > B/2, Y = 0

}

= P

{
B∑
b=1

Zb(X) > B/2
∣∣∣Y = 0

}
P0{Y = 0}

= PXP

{
B∑
b=1

Zb(X) > B/2
∣∣∣X = x, Y = 0

}
P0{Y = 0}.

The inner probability in the last line equals the tail probability of a sum of independent

Bernoulli random variables with success probability π1(x). As there are B random vari-

ables, their average approaches Bπ1(x); thus the tail probability becomes exponentially

small if π1(x) < 1/2. But this does not guarantee an exponential misclassification rate, be-

cause in order for the entire term to be exponentially small, π1(x) must be bounded above

for each x. Thus we need to strengthen Assumption (A2), as (A2) only requires the base

learner to be on average better than flipping a coin. We therefore replace assumption (A2)
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with the following stronger condition:

(A2∗) For almost all x with respect to PX (the marginal distribution of X under P0):

π1(x) = P
{
Tb(x) >

1

2
|Y = 0

}
<

1

2
and π2(x) = P

{
Tb(x) ≤ 1

2
|Y = 1

}
<

1

2
.

To complete the proof we make use of the following well known result regarding the tail

probability of a binomial random variable by Arratia and Gordon (1989).

Theorem 3.6.1. Let Z be a binomial random variable with distribution Binomial(n, p).

Then

P{Z ≥ k} = F (k, n, p) ≤ exp (−nH(k/n, p)) , if p <
k

n
< 1

where H(a, p) = alog(a/p) + (1− a)log((1− a)/(1− p)).

Apply Theorem 3.6.1 with k = B/2, n = B and p = π1(x) to obtain

P

{
B∑
b=1

Zb(X) > B/2
∣∣∣X = x, Y = 0

}

= F (B/2, B, π1(x))

(
by (A2∗) note p = π1(x) <

1

2
=

(B/2)

B
=
k

n

)

≤ exp

(
−B
[
1

2
log

(
1

2π1(x)

)
+

1

2
log

(
1

2(1− π1(x))

)])

≤ exp

(
−B

2
log

(
1

4π1(x)(1− π1(x))

))
≤
[
4π1(x)(1− π1(x))

]B/2

.

Consequently, it follows from our previous work that

P{Ce
B(X) = 1, Y = 0} ≤ EX

[
4π1(X)(1− π1(X))

]B/2

.
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By invoking a similar argument using

(1− Zb(X))|(X = x, Y = 1)
iid∼ Bernoulli(π2(x)),

deduce under assumptions (A1) and (A2∗) that

P{Ce
B(X) �= Y } ≤ EX

[
4π1(X)(1− π1(X))

]B/2

+ EX

[
4π2(X)(1− π2(X))

]B/2

. (3.2)

The exponential rate now follows under either smoothness conditions to π1(x) and π2(x)

or by assuming a uniform bound. On the other hand, convergence to zero (without a rate)

is already guaranteed without further assumptions. We state this formally in the following

result.

Theorem 3.6.2. Under assumptions (A1) and (A2∗), P{Ce
B(X) �= Y } → 0 as B →∞.

Proof. Let 0 < γB < 1 and define sets Aj,B = {x : πj(x) ≤ (1 − γB)/2} and A∗
j,B =

{x : (1 − γB)/2 ≤ πj(x) < 1/2} for j = 1, 2. Under assumption (A2∗), πj(x) < 1/2

for almost all x. Therefore we can decompose the integrals in (3.2) into integrals over Aj,B

and A∗
j,B. Setting gj(x) = 4πj(x)(1− πj(x)), we have

EX

[
4πj(X)(1− πj(X))

]B/2

=

∫
Aj,B

gj(x)
B/2 P(dx) +

∫
A∗

j,B

gj(x)
B/2 P(dx).

Let g(π) = 4π(1 − π). Then g(π) = 1 − (1 − 2π)2 which is a quadratic which attains its

maximum over [0, (1− γB)/2] at π = (1− γB)/2. Hence, for π over [0, (1− γB)/2]

g(π)B/2 ≤ (1− γ2B)
B/2 � exp(−Bγ2B/2).

We want to choose γB such that the right hand side converges to zero while simultaneously
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satisfying γB → 0. In particular, setting

γB =

√
2log(B)

B

we have γB → 0 and

(1− γ2B)
B/2 � exp(−logB) = B−1 → 0.

Hence, we have

∫
Aj,B

gj(x)
B/2 P(dx) ≤ (1− γ2B)

B/2

∫
Aj,B

P(dx) ≤ (1− γ2B)
B/2 → 0.

Furthermore, ∫
A∗

j,B

gj(x)
B/2 P(dx) ≤

∫
A∗

j,B

P(dx)

which converges to zero by the Dominated Convergence Theorem because A∗
j,B → ∅.

It is clear assumption (A2∗) cannot hold in general. For example, it cannot hold when

the Bayes rule has nonzero misclassification error. Recall that the Bayes rule is the classifier

Co defined as

Co(x) =

⎧⎪⎨
⎪⎩

1 if f(x) > 1/2

0 otherwise

where f(x) = P0{Y = 1|X = x} is the true classification probability. The Bayes rule

is the optimal rule under misclassification error. Let C(X) := C(X,L ) be an arbitrary

classifier where C : X → {0, 1}. Optimality of the Bayes rule implies that

P{Co(X) �= Y } ≤ P{C(X) �= Y }.
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This shows that if the Bayes misclassification error is nonzero, assumption (A2∗) cannot

hold, otherwise according to Theorem 3.6.2 we would have constructed a classifier with

smaller misclassification error than the Bayes rule. In particular, because the Bayes rule

has misclassification error

Lo = E
[
min(f(X), 1− f(X))

]

we must have

P{Ce
B(X) �= Y } ≥ E

[
min(f(X), 1− f(X))

]
.

We therefore replace assumption (A2∗) with the following weaker condition: (A2′)

(A2′) For almost all x with respect to PX (the marginal distribution of X under P0):

π1(x) = P
{
Tb(x) >

1

2
|Co(x) = 0

}
<

1

2
and π2(x) = P

{
Tb(x) ≤ 1

2
|Co(x) = 1

}
<

1

2
.

Since formula (3.2) suggests learners have to have a uniform bound, which is, ideally, the

Bayes risk.

Lemma 3.6.3. Under assumptions (A1) and (A2′), P{Ce
B(X) �= Co(X)} → 0 as B →∞.

Proof. let C(X) be Y in the proof of Theorem 3.6.2.

(A2′) is not quite a strict assumption since previous studies showed the consistence

of tree learner and we will further discuss the convergence rate of this consistence as in-

creasing training sample size later. The following example shows the fast convergence of

ensemble as learner number increase.

Example: Consider a binary response variable of two classes, each of the class

consists of a 2 dimensional Gaussian. The centers are equally spaced on a
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circle around the origin with radius r. I used the default setting of the “ml-

bench.2dnormals” function in r package “mlbench” where r =
√
2. The right

sub-figure in Figure 3.7 plotted the shape of the simulation data using 300 ob-

servations. 1000 fixed training data is simulated and fit into models of random

forest based on learner number (RF model uses r package “randomForestSRC”

with its default setting) 1 to 10, 20, 30 ,40, 50, 100, 200. 1000 separately.

Through fixed 1000 test data. the averaged brier score and misclassification

rate from 30 replications are plotted against the learner number in the left sub-

figure. Bayes risk as misclassification rate of Bayesian classifier is also added

as green dash line as a reference. In this simulation, both brier score (black

solid line) and misclassification rate (red dash line) converges fast as learner

number increases: after 50 leaners are added, both rates barely change. The

misclassification rate will not reach the Bayes risk even leaner number goes to

infinite because assumption (A2′) is not satisfied. Assumption (A2′) is about

the sample size of training data, which is discussed in the next section. How

RF gives different estimates to point A and point B in the right figure will be

ploted in Figure 3.8.

3.6.2 Convergence of tree learners precision

This section will discuss Tb(x) in a classification tree learner scenario. All content here is

about a fixed given x: performance all over X space is not discussed in this section. To

prove the consistency of Tb(x), I will first introduce the expectation of Tb(x) as P e
B(x),

prove P e
B(x)

p−→ P{Y = 1|x ∈ R(x)} and then prove R(x)
a.s.−−→ x in a pure random RF

setting, where R(x) is the expectation of terminal node for x.

Recall that T1, . . . , TB are classification trees grown from L =
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Figure 3.7: Convergence of ensemble through simulated 2-D Normal data

{(X1, Y1), . . . , (Xn, Yn)} with outputs 0 < Tb(x) < 1 representing the predicted

probability of Y = 1 for a given feature x. Because of the recursive partitioning property

of trees, each x must be a member of a unique terminal node of Tb which we shall denote

by Rb(x). The tree predicted probability of Y = 1 for x is

Tb(x) =

∑n
i=1 1{Xi∈Rb(X)}1{Yi=1}∑n

i=1 1{Xi∈Rb(X)}
.

Define the expectation of Tb(x) as P e
B(x) = E(Tb(x)).

P e
B(x) =

1

B

B∑
b=1

∑n
i=1 1{Xi∈Rb(X)}1{Yi=1}

Nb(x)

=
1

B

B∑
b=1

(∑
Xi∈Rb(x)

Yi

Nb(x)

)
,

(3.3)

where Nb(x) =
∑n

i=1 1{Xi∈Rb(X)}, which is the node size for Rb(x).

Here, the terminal node Rb(x) is a hyperrectangle and also a random variable with p

dimensions. Denote Rb(x) follows a p dimension distribution with mean R(x): R(x) =

Eb∈B(Rb(x)) with Lebesgue measure denoted as μ(R(x)). In R(x), suppose there are
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q samples, which are denoted as {(x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃q, ỹq)}, E(q) = � n
k+1
� given

sample size n and total splits number k, since on average there would be � n
k+1
� sample

in one terminal node but variance of q can be very large. Formula (3.3) demonstrates that

P e
B(x) is the mean of ỹ1, ỹ2...ỹq: P

e
B(x) = 1

q

∑q
i=1 ỹi. Note that these x̃q and ỹq are not

necessarily unique at all.

Theorem 3.6.4. P e
B(x)

p−→ PR(x) where PR(x) = P{Y = 1|x ∈ R(x)} as k → ∞ and

� n
k+1
� → ∞.

Proof. When μ(R(x)) is very small as k is large, it is reasonable to assume ỹ1, ỹ2...ỹq are

independent and identically distributed Bernoulli random variables

ỹ1, ỹ2...ỹq
iid∼ Bernoulli(PR(x)),

where PR(x) = P{Y = 1|x ∈ R(x)}.
Let μỹ = E(ỹ), where ỹ =

∑q
i=1 ỹi, also μỹ = qPR(x). Using Multiplicative Chernoff

Bound by Chernoff (1952):

P
(
ỹ > (1 + δ)μỹ

)
<
[ eδ

(1 + δ)1+δ

]μỹ

where δ denotes the relative error.

P
( ỹ − μỹ

q
>
δ

q

)
= P
(
P e
B(x)− PR(x) > ε

)
<
[ eqε

(1 + qε)1+qε

]qPR(x)

where ε = δ
q
.

Further, according to Chernoff Bound by Chernoff (1952), denote S as the probability

of an event, simultaneous occurrence on ỹ1, ỹ2...ỹq that more than q
2

of the events {ỹi = 1}:
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when PR(x) >
1
2
, S � 1− exp(− (PR(x)− 1

2
)2

2PR(x)
q), in other words,

P
[
P e
B(x) >

1

2
|PR(x) >

1

2

]
= 1− exp

(− (PR(x) − 1
2
)2

2PR(x)

q
)
.

Here, we can see that P
(
P e
B(x) − PR(x)

)
> ε and P

[
P e
B(x) >

1
2
|PR(x) >

1
2

]
converges in

different rate: the former is more related to the convergence rate of single learner and the

later is more related to the convergence rate of ensemble.

Consider a random tree classifier for simplicity as assumed by Breiman (2000): X ∼
Uniform[0, 1]d. At each step of constructing the tree, a leaf is chosen uniformly at random;

a split variable is then selected uniformly at random from the d candidates. Finally, a split

k is chosen along the randomly chosen variable at a uniformly random location to create

new hyperrectangle as a new node.

Theorem 3.6.5. R(x) a.s.−−→ x as k →∞ in a random tree scenario.

Proof. Suppose there is ζ ∈ R(x) and ζ �= x, denote dm = [xm, zm] as both the interval

and distance of x and ζ in the mth dimension. In a random tree classifier scenario, the

�k/d� splits, denoted as km = �k/d� in each dimension m, are mapping to km split points,

denoted as Sm1, Smi, ..., Smkmwhich are all i.i.d Uniform[0,1] random variables. ζ and x

are in the same terminal node R(x) means in every dimension, there is no split point Smi

between [xm, zm], with the probability (1− dm)
km . Therefore,

P (ζ ∈ R(x)) =
p∏

m=1

[
(1− dm)

km
]
.

As k →∞, all km →∞:

P (ζ ∈ R(x)) =

⎧⎪⎪⎨
⎪⎪⎩
0 if dm �= 0

1 if dm = 0

(3.4)
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Lemma 3.6.6. R(x) a.s.−−→ x as km →∞ for all m = 1, . . . , d dimensions in a general tree

scenario.

Proof. For non-random tree, as long as k → ∞ and km → ∞, P
(
Sm,i ∈ [xm, zm]

)
= 1

when dm �= 0 for i ∈ {1, .., km}, since there are infinite distinct split points in this mth

dimension; Further, P
(
ζ ∈ R(x)

)
=
∏d

m=1 P
(
Smi �∈ [xm, zm]

)
making Equation (3.4)

still holds.

From Theorem 3.6.4 and Theorem 3.6.5, P e
B(x)

p−→ Co(x); therefore (A2′) holds in a

random classifier tree learner setting :

π1(x) = P
{
Tb(x) >

1

2
|Co(x) = 0

}
<

1

2
and π2(x) = P

{
Tb(x) ≤ 1

2
|Co(x) = 1

}
<

1

2
,

as k →∞ and q = � n
k+1
� → ∞.

The aim of proving Theorem 3.6.5 is to give a insight of convergence rate of terminal

nodes shrindage in probability. In order to observe the convergence behavior of P e
B(X),

we call “ 1
B

∑B
b=1

(∑
Xi∈Rb(x)

Nb(x)

)
” as Kernal to get insight. Tree ensemble method is actually

a weighting method on the training sample responses. Although Theorem 3.6.5 is based

on random tree classifier scenario, it indicates information for regular tree with more com-

plicated splitting rule and finite sample: km = �k/d� for all dimensions in random tree

secario; whereas usually learners tends to split more often on variables which are more

informative to predict the outcome. If a variable, say m̃, is more important, then km̃ > km,

where m = 1, . . . , p and m̃ �= m, meaning the Kernal is sharper to the more important

variable. Moreover, the split point is not usually uniformly randomly chosen: split points

are more depended on the outcome value, meaning the Kernal is more flat to the Bayesian

risk bound. Figure 3.8 (a) and (b) shows the kernal shape of two data points in the sim-
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(a) point A, n=500 (b) point B, n=500

(c) point A, n=15000 (d) point B, n=15000

Figure 3.8: RF Kernel shape for two data points in simulation of Figure 3.7

Note. n=training data sample size; point A and point B is marked in the right sub-figure in

Figure 3.7

ulation of Figure 3.7 with sample size n = 500, tree number B = 1000: for point A in

the left sub-figure, the Kernal is more sharp than point b in (b) because the neighborhood

data of the focal point equally predict the outcome, so the weights in Kernal only depend

on the distance in X; in contrast, for point B in the right sub-figure (b), the Kernal is more
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flat along the Bayse boundary because the neighborhood data along the Bayse boundary

is more predictive for the outcome Y , so the weights spread along the Bayse boundary.

Figure 3.8 (c) and (d) shows the Kernal shape of the same two data points A and B with

sample size n = 15000, tree number B = 1000. When sample size is large, k tends large;

then P e
B(x)

p−→ Co(x), and the Kernal is very sharp. For synthetic RF, the kernal will be

more sharp because the synthetic variable is already a weighted average on the neighbor-

hood data of the focal x; therefore the synthetic RF has the “kernal of the kernal”, which

involves more broaden area in X but sharper on the tip area close to focal x.

3.6.3 Convergence of tree learners correlation

Assumption (A1) in section 3.6.1 assumes independence of all learners, which is generally

not true. Breiman (2000) firstly discussed the correlation of learners. In an infinite sample

space, if all the learners are consistent, a “perfect” prediction is expected from them: every

learner gives the same answer, so the correlation of learners would be 1.

Definition 3.6.7. Suppose Ti(x) and Tj(x) is the ith and jth learner ’s forecast probability

of P (Y = 1|x), Denote

ρb(x) = Ei,j∈B(
cov(Ti(x), Tj(x))

σTi(x)σTj(x)

)

as the learners’ correlation, where

cov
(
Ti(x), Tj(x)

)
= E[

(
Ti(x)− P e

B(x)
)(
Tj(x)− P e

B(x)
)
]

and

σTi(x) =

√
E
[(
Ti(x)− P e

B(x)
)2]
,

similar for j.
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As k → ∞ and q = � n
k+1
� → ∞ in random tree RF, ρb(x) → 1, σTi(x) → 0 and

cov
(
Ti(x), Tj(x)

) → 0. From Theorem 3.6.4 and Theorem 3.6.6, Ti(x) and Tj(x)
p−→

P e
B(x)

p−→ Co(x) as k →∞ and q = � n
k+1
� → ∞.

Even ρb(x) → 1 makes assumption (A1) invalid, since σTi(x) → 0, all the learners al-

ready converge to Bayes classifier and generate the same predicted value in every x, which

is rarely true in real situation in a finite sample and non-pure random learner setting. How-

ever, ρb(x) raises the issue that ensemble misclassification rate converges under correlated

learner scenario.

How to lower the correlation of learners is to divide the sample. Assume a very

large sample size n = NB. We partition L into blocks of size N denoted by Lb,

b = 1, . . . , B (i.e. L =
⋃̇B

b=1Lb and |Lb| = N ). Base learner Tb is constructed us-

ing Lb. Its output is Tb(X) := Tb(X,Lb). By construction, Tb(X,Lb)
iid∼ P, where P

denotes the joint distribution for N learning data points: for example, the joint distribu-

tion for (X1, YN), . . . , (Xn, YN). This satisfies assumption (A1). However, for assumption

(A2∗), we must ensure that the base learners are uniformly better than random guessing.

Dividing the sample may make base learner less accurate. Therefore, doubts remain over

whether counterfactual RF is a better technique as a data dividing model. Performance of

counterfactual RF is compared with other RF method in the next chapter.

Example: Simulation in Figure 3.7 is used to show misclassification rate and

Brier score convergences as sample size increasing. The left sub-figure in Fig-

ure 3.9 plotted how the misclassification rate converges as training sample size

increases with a fixed learner number 50. Training data is of sample size 100,

400, 1000, 2000,3000,5000, 10000 as well as 20000. Through fixed 1000 test

data, the averaged misclassification rate (red dash line) from 30 replications are

plotted against the training sample size in the left sub-figure. Misclassification

rate of Bayesian classifier is also added as a reference in color blue. Brier
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score is displayed in right sub-figure. Results of single learner and random

forest are compared in green and red dash line acccordingly. The solid black

line is a model of ensemble random forests: I divided the training sample into

subgroups of sample size=200; for each subgroup I grow a random forest (us-

ing default setting in r package “randomForestSRC” and ntree=50); the final

result comes from the majority vote of these subgroup random forests result,

called iid random forest result. From this simulation, both brier score and mis-

classification rate converges fast as training sample size increases. Random

forest, as an ensemble method shows better performance than the single tree,

as base learner, result. However, Random forest did not converge to the Bayes

risk as sample size increasing partly due to the reason that assumption (A1)

did not holds: learners are based on the same training sample so learners are

correlated. One way to make the learners more independent is to divide the

sample to grow separate learne as iid RF does. The result of iid random forest,

as a model satisfied both assumption (A1) and (A2′), converges in to Bayes

risk.

Figure 3.9: Performance of iid RF which splits the data into i.i.d groups and grows separate RFs



Chapter 4

Model application for continuous
outcome
In this dissertation RF is used to model the response for direct estimation of the ITE. Our

use of RF is motivated by its well known ability to provide accurate local prediction.

4.1 Simulation

Two sets of simulation models were used to assess performance of the different RF meth-

ods. All simulations assumed a continuous Y outcome and a binary exposure variable

T ∈ {0, 1} The first set of simulations were modified from those of Section 4.2 of Ghosh

et al. (2015). We simulated 11 independent covariates X1, . . . , X11 from a standard normal

distribution, and nine independent covariates X12, . . . , X20 from a Bernoulli(0.5). Three

different models were used for the outcome Y , while a common simulation model was

used for the exposure variable T . We refer to the three simulation models as G1, G2, G3

(for Ghosh 1, 2, 3).

In G1, G2, G3 the outcome was assumed to be Yi = fGj
(Xi, Ti) + εi, where εi were

73
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independent N(0, σ2) and

fG1(X, T ) =2.455 + .4T + .1X1 − .154X2 − .152X11 − .126X12

fG2(X, T ) =2.455 + .4T + .1X1 − .154X2 − .152X11 − .126X12 − .3TiX11

fG3(X, T ) =2.455 + .4T + .1X1 − .154(1− T )X2 − .254TX2
2 − .152X11

− .126X12 − .3TiX11.

A logistic regression model was used to simulate T in which the linear predictor F (X)

defined on the logit scale was

F (X) = −2 + .028X1 − .374X2 − .03X3 + .118X4 − 0.394X11 + 0.875X12 + 0.9X13.

Therefore in all three models, X1, X2, X11, X12 were confounding variables, meaning that

they were related to both the exposure and the outcome variable. In model 2, addition-

ally X11 had a treatment interaction in the outcome model, while in model 3, both X2 and

X11 had a treatment interaction. Thus models G2 and G3 introduce a confounding het-

erogeneous treatment effect (CHTE). The top panel of Figure 4.1 depicts the relationship

between the different variables.

The second set of simulations were modified from Setoguchi et al. (2008). In total

10 variables W = (W1, . . . ,W10) were simulated from a multivariate normal distribution

with correlations between variables. Three exposure models for T were used, exposure

models A, E and G. We refer to the resulting models as SA, SE, SG (for Setoguchi A, E,

G). In each of these, a logistic regression model was used where the linear predictor on the
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logit scale was:

FSA
(W) =.8W1 − .25W2 + .6W3 − .4W4 − .8W5 − .5W6 + .7W7

FSE
(W) =.8W1 − .25W2 + .6W3 − .4W4 − .8W5 − .5W6 + .7W7 − .25W 2

2

.4W1W3 − .175W2W4 − .2W4W5 − .4W5W6

FSG
(W) =FSE

(W).

Three distinct models for Y were used based on a continuous normal measurement error

model. The mean function E(Y |W, T ) was respectively:

fSA
(W, T ) =3.85− .3W1 + .4W2 + .7W3 + .2W4 − .7W8 + .2W9 − .3W10 + .4Ti

fSE
(W, T ) =3.85− .3W1 − .4W2 + .7W3 + .2W4 − .7W8 + .2W9 − .3W10 + .4Ti

+ .2W 2
2 + .5W1W3 + .2W1W4 − .7TW8 − .7TW10

fSG
(W, T ) =3.85− .3W1 − .4W2 + .7W3 + .2W4 − .7W8 + .2W9 − .3W10 + .4Ti

+ .2W 2
2 + .5W1W3 + .2W1W4 − .7TW1W2.

Note that simulations SE and SG use the same exposure model and employ nearly identical

outcome models except that SG has a treatment interaction with confounding variables W1,

W2, and SE has a treatment interaction with non-confounding variables W8 and W10. Thus

SG introduces CHTE while SE only introduces a heterogeneous treatment effect (HTE).

Simulation SA has a fixed treatment effect and no heterogeneity is present. The bottom

panel of Figure 3.1 displays the relationship between the different variables in SA, SE, SG.

Table 4.1 summarizes the exposure and outcome models for the Ghosh and Setoguchi mod-

els.
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Figure 4.1: Top figure: simulation models from Ghosh et al. (2015). Bottom figure: simu-

lation models from Setoguchi et al. (2008). Dashed lines indicate correlations between W
variables.
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Table 4.1: (a)Summary of exposure models used in Ghosh and Setoguchi simulations.

Moderate non-additivity

Additive (two-way interaction

(main effects only) terms involving confounders)

Linear G1, G2, G3,
(main effects only) SA

Mild non-linearity SE, SG

(quadratic term)

Table 3.1: (b)Summary of outcome models used in Ghosh and Setoguchi simulations.

Moderate non-additivity

Additive (two-way interaction

(main effects only) terms involving confounders)

Linear G1, G2, SA

(main effects only)

Mild non-linearity G3 SE, SG

(quadratic term)

4.1.1 Experimental settings and parameters

Simulations were run under two settings for the sample size, n = 500 and n = 5000.

All sim- ulations used σ2 = 0.1 for the variance of the normal error distribution used

in the Y outcome models. The smaller sample size experiments n = 500 were repeated

independently B = 1000 times, the larger n = 5000 experiments were repeated B = 250

times. All forests were based on 1000 trees with a nodesize of 3. One exception was for

bivariate forests, where a nodesize of 1 was used for imputation using unsupervised forests

(following the strategy recommended by Tang and Ishwaran, 2017). Another exception was
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synthetic RF, where the RF base learners were constructed using all possible combinations

of nodesize values 110, 20, 30, 50, 100 and mtry values of 1, 10 and 20 (for a total of 42

forest base learners). All RF computations were im- plemented using the randomForestSRC

R-package (Ishwaran and Kogalur, 2017) (hereafter abbreviated as RF-SRC). The RF-SRC

package implements all forms of RF data imputation, fits synthetic forests, multivariate

forests, and utilizes openMP parallel processing, which allows for parallel processing on

user desktops as well as large scale computing clusters; thus greatly reducing computational

times.

4.1.2 Performance measures

Performance was assessed by bias and root mean squared error (RMSE). When calculating

these measures we conditioned on the propensity score, e(x). This was done to assess how

well a procedure could recover treatment heterogeneity effects and to provide insight into

its sensitivity to treatment assignment. A robust procedure should perform well not only

in regions of the data where e(x) = 0.5, and treatment assignment is balanced, but also in

those regions where treatment assignment is unbalanced, 0 < e(x) < .5 and 1 > e(x) > .5.

Assume the data is stratified into groups G = {G1, ...,GM} based on quantiles q1, . . . , qM

of e(x). Given an estimator τ̂ of τ , the bias for group Gm was defined as

B(m) = E
[
τ̂(X)|X ∈ Gm

]− E
[
τ(X)|X ∈ Gm

]
,m = 1, . . . ,M

Recall that our simulation experiments were replicated independently B times. Let Gm,b

denote those x values that lie within the qm quantile of the propensity score from realization

b. Let τ̂b be the ITE estimator from realization b. The conditional bias was estimated by

B̂(m) =
1

B

B∑
b=1

τ̂m,b − 1

B

B∑
b=1

τm,b
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, where

τ̂m,b =
1

#Gm,b

∑
xi∈Gm,b

τ̂b(xi), τm,b =
1

#Gm,b

∑
xi∈Gm,b

τb(xi)

.Similarly, we define the conditional RMSE of τ̂ by

RMSE(m) =

√
E
[(
τ̂(X)− τ(X)

)2|X ∈ Gm

]
,m = 1, . . . ,M,

which we estimated using

R̂MSE(m) =

√√√√ 1

B

B∑
b=1

1

#Gm,b

∑
xi∈Gm,b

[
τ̂b(xi)− τb(xi)

]2
.

4.1.3 Results

Figure 4.2 displays the conditional bias and RMSE for each method for each of the six

different simulation experiments. The left and right panels display small and larger sample

sizes, n = 500 and n = 5000; the top and bottom panels display bias and RMSE, respec-

tively. Each boxplot displays M values for the performance measure evaluated at each of

the M stratified propensity score groups. We used a value of M = 100 throughout. One

immediate observation from Figure 4.2 is that simulations SA, SE, SG appear to be more

difficult than G1, G2, G3. This is likely due to the more complex nature of the outcome

and exposure models used in these simulations (see Table 4.1). Also unlike the Ghosh sim-

ulations, the Setoguchi simulations used correlated features (see bottom panel of Figure

4.2). We summarize the performance of methods by separating results in terms of bias and

RMSE below.
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Figure 4.2: Conditional bias (top) and RMSE (bottom) from 6 simulation experiments for

different sample sizes n. Boxplots display bias and RMSE values for each of the 100

percentiles of the propensity score.
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Bias performance

Virtual twins interaction, τ̂V T−I , and synthetic counterfactual forests, τ̂synCF , are generally

the best in terms of bias, with a slight edge going to τ̂V T−I in the smaller n = 500 sample

setting (left top panel) for S and SE and SG. However, as n increases (right top panel),

bias for τ̂synCF decreases significantly, especially for SE and SG, suggesting its perfor-

mance is best in larger sample settings.Also, the variability of bias across the M propensity

groups is smaller than τ̂V T−I (i.e. the boxplots for τ̂synCF are narrower than τ̂V T−I). In

general, τ̂synCF is among the methods with lowest bias in the larger sample simulations.

It is also interesting to observe how bias of τ̂V T−I is improved over τ̂V T in the Setoguchi

simulations. Augmenting the design matrix to include all pairwise treatment interactions

improves adaptivity of VT forests in these more complex simulations.

RMSE performance

The results for RMSE performance generally mirror those for bias. As n increases (com-

pare left bottom panel to right bottom panel), τ̂synCF improves dramatically and is generally

among the best in terms of RMSE. For small n, both τ̂V T and τ̂V T−I outperform τ̂synCF in

certain settings (such as SE and SG), but as n increases, τ̂synCF improves dramatically.

Also, variability of RMSE for τ̂synCF over the M propensity scores is generally smaller

than τ̂V T−I for large n. It is interesting to note that honest RF, τ̂honestRF , does very well in

simulations G1 and SA, but does poorly in all other simulations. One explanation for this is

that G1 and SA are the only simulations with fixed treatment effects. Therefore, τ̂honestRF

may not be suitable for complex HTE and CHTE settings. Finally, we note that the bivari-

ate imputation method, τ̂bivariate, generally performed well in all experiments, for example

generally beating the standard implementation of VT, τ̂V T , but was never the top performer

in any setting.
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Discussion

There is evidence that those methods with greatest adaptivity to potential confounding,

when combined with out-of-sample estimation, do best. One particularly promising ap-

proach is a counterfactual approach in which separate forests are constructed using data

from each treatment assignment. To estimate the ITE, each individuals predicted outcome

is obtained from their treatment assigned forest. Next, the individuals treatment is replaced

with the counterfactual treatment and used to obtain the counterfactual predicted outcome

from the counterfactual forest; the two values are differenced to obtain the estimated ITE.

This is an extension of the virtual twin approach, modified to allow for greater adaptation to

potentially complex treatment responses across individuals. Furthermore, when combined

with synthetic forests (Ishwaran and Malley, 2014), performance of the method is further

enhanced due to reduced bias.

4.2 Project Aware: a counterfactual approach to under-

standing the role of drug use in sexual risk

Project Aware was a randomized clinical trial performed in nine sexually transmitted dis-

ease clinics in the United States. The primary aim was to test whether brief risk-reduction

counseling performed at the time of an HIV test had any impact on subsequent incidence

of sexually transmitted infections (STIs). The results showed no impact of risk-reduction

counseling on STIs. Neither were there any substance use interactions of the impact of risk-

reduction counseling; however, substance use was associated with higher levels of STIs at

follow-up. Other research has shown that substance use is associated with higher rates of

HIV testing, and Black women showing the highest rates of HIV testing in substance use

treatment clinics (Hernández et al., 2016). Since substance use is associated with risky
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sexual activity, detecting the dynamics of this relationship can contribute to preventive and

educational efforts to control the spread of HIV. Our procedures for causal analysis of

heterogeneity of effects in observational data should equalize the observed characteristics

among substance use and non-substance use participants, thereby removing any impact of

background imbalance in factors that may be related to relationship of substance use on

sexual risk. Our procedure then allows an exploration of background factors that are truly

related to this causal effect, conditional on all confounding factors being in the feature set.

To explore this issue of how substance use plays a role in sexual risk, we pursued an

analysis in which the treatment (exposure) variable T was defined as drug use status of

an individual (0 = no substance use in the prior 6 months, 1 = any substance use in the

prior 6 months leading to the study). For our outcome, we used number of unprotected

sex acts within the last six months as reported by the individual. Although Project Aware

was randomized on the primary outcome (risk-reduction counseling), analysis of secondary

outcomes such as substance use should be treated as if from an observational study. Indeed,

unbalancedness of the data for drug use can be gleaned from Table 4.3 which displays re-

sults from a logistic regression in which drug use status was used for the dependent variable

(n = 2813, p = 99). The list of significant variables suggests the data is unbalanced and

indicates that inferential methods should be considered carefully. Thus Table 4.4, which

displays the results from a linear regression using number of unprotected sex acts as the de-

pendent variable, should be interpreted with caution. Table 4.4 suggests there is no overall

exposure effect of drug use, although several variables have significant drug-interactions.

However, in order to avoid drawing potentially flawed conclusions from an analysis

like Table 4.4, we applied our counterfactual synthetic approach, τ̂synCF. A synthetic forest

was fit separately to each exposure group using number of unprotected sex acts as the

dependent variable. This yielded estimated causal effects {τ̂synCF(xi), i = 1, . . . , n} for

τ(x) defined as the mean difference in number of unprotected sex acts for drug versus
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Table 4.3: Difference in variables by drug use illustrating unbalancedness of Aware data.
Only significant variables (p-value < 0.05) from logistic regression analysis are displayed
for clarity.

Estimate Std. Error Z p-value

Race -0.28 0.11 -2.50 0.01

Chlamydia 0.34 0.15 2.30 0.02

Site 2 -0.62 0.16 -3.94 0.00

Site 4 -0.53 0.16 -3.23 0.00

Site 6 0.44 0.18 2.43 0.01

Site 7 -0.65 0.15 -4.22 0.00

Site 8 0.95 0.21 4.51 0.00

HIV risk 0.17 0.03 5.14 0.00

CESD 0.02 0.01 3.13 0.00

Condom change 2 -0.24 0.12 -2.07 0.04

Marriage 0.08 0.03 2.76 0.01

In Jail ever 0.42 0.10 4.07 0.00

AA/NA last 6 months 1 0.69 0.23 3.04 0.00

Frequency of injection 0.18 0.07 2.49 0.01

Gender -0.39 0.10 -4.00 0.00

non-drug users. The estimated causal effects were then used as dependent variables in a

linear regression analysis. This is convenient because the estimated coefficients from the

regression analysis can be interpreted in terms of subgroup causal differences (we elaborate

on this point shortly). In order to derive valid standard errors and confidence regions for

the estimated coefficients, the entire procedure was subsampled. That is, we drew a sample

of size m without replacement. The subsampled data was then fit using synthetic forests as

described above, and the resulting estimated causal effects used as the dependent variable in

a linear regression. The procedure was repeated 1000 times independently. A subsampling

size of m = n/10 was used. The confidence regions of the resulting coefficients are

displayed in Figure 4.3. Table 4.5 displays the coefficients for significant values (p-values

< .05). We note that bootstrapping could have have been used as another means to generate

nonparametric p-values and confidence regions. However, we prefer subsampling because

of its computational speed and general robustness (Politis et al., 1999).
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Table 4.4: Linear regression where dependent variable is number of unprotected sex acts
from Aware data. Only variables with p-value < 0.10 from regression analysis are dis-
played for clarity.

Estimate Std. Error Z p-value

Intercept -5.06 22.17 -0.23 0.82

Drug 9.59 29.72 0.32 0.75

HCV2 8.14 4.09 1.99 0.05

Site 2 -14.00 6.82 -2.05 0.04

HIV risk 3.89 1.41 2.76 0.01

Condom change 3 -17.23 6.52 -2.64 0.01

Condom change 5 -21.98 6.65 -3.30 0.00

Visit opthamologist -16.46 8.17 -2.01 0.04

Number visit opthamologist 9.13 3.93 2.33 0.02

Marriage -2.13 1.17 -1.81 0.07

Smoke 53.13 16.26 3.27 0.00

Number cigarette per day -14.63 4.76 -3.07 0.00

Drug x CESD 0.88 0.47 1.88 0.06

Drug x Condom change 2 -24.70 6.83 -3.62 0.00

Drug x Condom change 3 -25.82 8.75 -2.95 0.00

Drug x Condom change 4 -37.58 14.20 -2.65 0.01

Drug x Condom change 5 -28.78 9.33 -3.08 0.00

Drug x Visit dentist -16.36 8.26 -1.98 0.05

Drug x Smoke -34.71 20.53 -1.69 0.09

Drug x Number cigarette per day 9.81 5.95 1.65 0.10
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Figure 4.3: Confidence intervals for all coefficients of linear model used in Table 3. Inter-
vals determined using subsampling. Dark colored boxplots indicate variables with p-value
< .05.
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To interpret the coefficients in Table 4.5, it is useful to write the true model for the

outcome (number of unprotected sex acts) as Y = f(X, T ) + ε, where

f(X, T ) = α0T + h(X, T ),

and h is some unknown function. Under the assumption of SITA, we have

τ(x) = f(x, 1)− f(x, 0) = α0 + h(x, 1)− h(x, 0).

Now since we assume a linear model α +
∑p

j=1 βjxj for the ITE, we have

α0 + h(x, 1)− h(x, 0) = α +

p∑
j=1

βjxj.

From this we can infer that the intercept in Table 4.5 is an overall measure of the exposure

effect of drug use, α0 (this is why the intercept term is listed as drug use). Here the esti-

mated coefficient is 17.0. The positive coefficient implies that on average drug users have

significantly more unprotected sex acts than non-drug users (significance here is slightly

larger than 5%).

The remaining coefficients in Table 4.5 describe how the effect of drug use on sexual

risk is modulated by other factors. Under our linear model, we have

h(x, 1)− h(x, 0) =

p∑
j=1

βjxj.

Because h(x, 1)−h(x, 0) represents how much a subgroup deviates from the overall causal

effect, each coefficient in Table 4.5 quantifies the effect of a specific subgroup on drug

use differences. Consider for example, the variable “Frequency of injection” which is a

continuous variable representing frequency of injections in drug users. Because its esti-
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Table 4.5: Linear regression of Aware data with dependent variable equal to the estimated
causal effects {τ̂synCF(xi), i = 1, . . . , n} from counterfactual synthetic random forests.
Causal effect is defined as the mean difference in unprotected sex acts for drug users versus
non-drug users. Standard errors and significance of linear model coefficients were deter-
mined using subsampling. For clarity, only significant variables with p-value < 0.05 are
displayed (the intercept is provided for reference but is not significant).

Estimate Std. Error Z

Intercept (drug use) 16.97 9.36 1.81

CESD 0.60 0.13 4.54

Condom change 2 -19.38 2.96 -6.56

Condom change 3 -23.33 3.23 -7.22

Condom change 4 -21.46 3.39 -6.32

Condom change 5 -24.02 3.41 -7.04

Usual care 3 4.91 2.11 2.33

Marriage -1.61 0.73 -2.21

No health insurance 2.72 0.99 2.75

SU treatment last 6 months 2 6.38 3.20 2.00

Frequency of injection 3.59 1.77 2.02

mated coefficient is 3.6, this means the difference in unprotected sex acts between drug

and and non-drug users, which is positive, becomes even wider for high frequency drug

users. Another risky factor is “No health insurance”, which is an indicator of lack of health

insurance coverage. Because its estimated coefficient is 2.7, we can take this to mean that

the increase in sexual risk for an individual without health insurance is more pronounced

in drug users. As another example, consider the variable “Condom change” which is an

ordinal categorical variable measuring an individual’s stage of change with respect to con-

dom use behavior. The baseline level is a “precontemplator”, who is an individual who

has not envisioned using condoms. The second level “contemplator” is an individual con-

templating using condoms. Further increasing levels measure even more willingness to

utilize condoms. All coefficients for Condom change in Table 4.5 are negative, and there-

fore if an individual is more willing to utilize safe condom practice (relative to the baseline

condition), the difference in number of unprotected sex acts diminishes between drug and
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non-drug users. Other variables that have a subgroup effect are Marriage (whether an indi-

vidual is married), CESD (Center for Epidemiological Studies Depression Scale), and SU

treatment last 6 months (substance abuse treatment in last 6 months). In all of these, the

pattern is similar to before. With more risky behavior (with depression) the number of un-

protected sex acts increases for non-drug users relative to drug users, but as risky behavior

decreases (e.g. married), the effect of drug use diminishes.

Figure 4.4 displays a coplot of the RF estimated causal effects {τ̂synCF(xi), i = 1, . . . , n}
as a function of several variables. The coplot is another useful tool that can be used to ex-

plore causal relationships. We use it to uncover relationships that may be hidden in the

linear regression analysis. The RF causal effects are plotted against CESD depression for

individuals with and without health insurance. Conditioning is on the variables Condom

change (vertical conditioning) and HIV risk (horizontal conditioning). HIV risk a self-rated

variable and of potential importance and was included even though it was not significant

in the linear regression analysis. For patients with potential to change condom use (rows

2 through 5), increased depression levels leads to an increased causal effect of drug use,

which is slightly accentuated for high HIV risk (plots going from left to right). The effect

of health insurance is however minimal. On the other hand, for individuals with low poten-

tial to change condom use (bottom row), the estimated exposure effect is generally high,

regardless of depression, but is reduced if the individual has health insurance.

4.3 Discussion

In observational data with complex heterogeneity of treatment effect, individual estimates

of treatment effect can be obtained in a principled way by directly modeling the response

outcome. However, successful estimation mandates highly adaptive and accurate regres-

sion methodology and for this we relied on RF, a machine learning method with well known
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Figure 4.4: RF estimated causal effect of drug use plotted against CESD depression for
individuals with and without health insurance. Values are conditioned on Condom change
(vertical conditional axis) and HIV risk (horizontal conditional axis).
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properties for accurate estimation in complex nonparametric regression settings. However,

care must be used when applying RF for casual inference. We encourage the use of out-

of-bag estimation, a simple but underappreciated out-of-sample technique for improving

accuracy. We also recommend that when selecting a RF approach, that it should have some

means for encouraging adaptivity to confounding, i.e. that it can accurately model poten-

tially separate regression surfaces for each of the treatment groups. One example of this is

the extension to VT, which expands the design matrix to include all pairwise interactions

of variables with the treatment, a method we call τ̂VT-I, and described in the paper by Fos-

ter et al. (2011). We found that this simple extension, when coupled with out-of-bagging,

significantly improved performance of VT. Another promising method was counterfactual

synthetic forests τ̂synCF, which generally had the best performance among all methods, and

was superior in the larger sample size simulations, outperforming even the highly adaptive

BART method. The larger sample size requirement is not so surprising as having to grow

separate forests causes some loss of efficiency; this being however mitigated by its superior

bias properties which take hold with increasing n.

In looking back, we can now see that the success of counterfactual synthetic RF can

be attributed to three separate effects: (a) fitting separate forests to each treatment group,

which improves adaptivity to confounding; (b) replacing Breiman forests with synthetic

forests, which reduces bias; and (c) utilizing OOB estimation, which improves accuracy.

Computationally, counterfactual synthetic RF are easily implemented with available soft-

ware and have the added attraction that they reduce parameter tuning. The latter is a con-

sequence and advantage of using synthetic forests. A synthetic forest is constructed using

RF base learners, each of these being constructed under different nodesize and mtry tuning

parameters. Correctly specifying mtry and nodesize is important for good performance in

Breiman forests. The optimal value will depend on whether the setting is large n, large p,

or large p and large n. With synthetic forests this problem is alleviated by building RF base
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learners under different tuning parameter values.

Importantly, and underlying all of this, is the potential outcomes model, a powerful

hypothetical approach to causation. The challenge is being able to properly fit the po-

tential outcomes model and for this, as discussed above, we relied on the sophisticated

machinery of RF. We emphasize that the direct approach of the potential outcomes model

is well suited for personalized inference via the ITE. Estimated ITE values from RF can be

readily analyzed using standard regression models to yield direct inferential statements for

not only overall treatment effect, but also interactions, thus facilitating inference beyond

the traditional ATE population-centric viewpoint. Using the Aware data we showed how

counterfactual ITE estimates from counterfactual synthetic forests could be explored to un-

derstand causal relations. This revealed interesting connections between risky behavior,

drug use, and sexual risk. The analysis corrects for any observed differences by the expo-

sure variable, so to the extent that we have observed the important confounding variables,

this result can tentatively be considered causal, though caution should be used due to this

assumption. Clearly, this type of analysis, which controls for observed confounding gives

additional and important insights above simple observed drug usage differences. We also

note that although we used linear regression for interpretation in this analysis, it is possible

to utilize other methods as well. The counterfactual synthetic forest procedure provides a

pipleline that can be connected with many types of analyses, such as the conditional plots

that were also used in the Aware data analysis.



Chapter 5

Personalized Treatment in ischemic
cardiomyopathy
Estimation of multiple treatment effects in observational survival data is complicated due

to confounding, heterogeneity, and selection bias. A key challenge is assessing overlap

and, possibly, estimation of effects strictly within overlapping populations that are eligible

for the corresponding treatments. Unfortunately, treatments do not always have clearly de-

fined evidence based eligibility criteria. Therefore, we propose new random forest methods

to address individual therapy overlap. These methods possess the unique feature of being

able to incorporate external expert knowledge either in a fully supervised way (i.e., we

have a strong belief that knowledge is correct) using multilabel analyses, or in a minimally

supervised fashion (i.e., knowledge is not considered gold-standard) using multiclass anal-

yses. We directly estimate individual treatment effect (ITE) and average treatment effect

(ATE) through comparison of survival under counterfactual treatment assignments using

an extension to random survival forests we call virtual twin random survival forests in-

teraction. Treatment effect is viewed as a dynamic causal procedure to making treatment

decisions. Motivation for our methodology arose from the problem of current treatment

management for ischemic cardiomyopathy. Using a large observational survival data set,

four well established therapies are compared: coronary artery bypass grafting (CABG),

CABG combined with surgical ventricular reconstruction (SVR), CABG combined with

mitral valve anuloplasty (MVA), and listing for heart transplantation (LCTx).
93
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5.1 Background

It is common in medical settings for multiple treatment options to be available for a patient.

However determining the therapy most applicable for a patient that maximizes patient out-

come, such as survival, is often difficult. One problem is that therapy will not always have

clearly defined evidence based eligibility criteria. Thus, the same patient may be treated

differently by different physicians, or at different hospitals, seemingly without explicit or

evident reasons. A second problem is that even when treatment eligibility can be decided,

the efficacy of eligible treatments may be controversial.

Consider ischemic cardiomyopathy, a cardiovascular condition in which the arteries

that supply blood to the heart become narrowed. Over time, the lack of blood causes the

heart to become enlarged and dilated and ultimately reduces its ability to pump blood to

the body. Treatments for ischemic cardiomyopathy include coronary artery bypass grafting

(CABG), a surgical treatment developed in the late 1960’s for patients with severe obstruc-

tive coronary artery disease. Other treatments include surgical ventricular reconstruction

(SVR) performed together with CABG; and mitral valve anuloplasty (MVA) performed to-

gether with CABG. Patients may also be listed for heart transplant (LCTx) in cases where

the above surgical interventions may not be appropriate. For convenience, Table 1 lists the

four treatments and their acronyms.

Determining appropriate therapy for ischemic cardiomyopathy is difficult because eligi-

bility for therapy depends on many factors. For heart transplant listing (LCTx), presence of

severe clinical symptoms is required, for example as measured by NYHA functional class,

and patients must generally be less than 70 years of age, although this restriction may ad-

ditionally depend on the hospital and the state. For MVA, severe mitral valve regurgitation

grade is generally required, but for CABG, patients typically have minimal mitral valve

regurgitation. Further complicating matters is that even when eligibility of therapy can be
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Table 5.1: Abbreviations and terminology used throughout the paper

Abbreviation Definition

CABG Coronary artery bypass grafting alone

MVA Coronary artery bypass grafting with mitral valve anu-

loplasty

SVR Coronary artery bypass grafting with surgical ventric-

ular reconstruction

LCTx Listing for cardiac transplantation

ATE Average treatment effect

ATT Average treatment effect on the treated

ITE Individual treatment effect

ITR Individualized treatment rule

RSF-VT-I Random survival forests virtual twins interactions

agreed upon, efficacy of therapy can be highly controversial. For example, the Surgical

Treatment for Ischemic Heart Failure (STICH) trial, a large study funded by the National

Heart, Lung, and Blood Institute, showed SVR reduced left ventricular volume compared

with CABG, but did not significantly reduce the rate of death or hospitalization due to car-

diac related causes (Jones et al., 2009). Another example is ischemic mitral regurgitation,

an affliction affecting thousands of Americans after a heart attack, which is caused by pap-

illary muscle displacement, leaflet tethering, and ventricular dilatation. There is evidence

that MVA performs better than CABG in diminishing postoperative mitral regurgitation

and improving early symptoms (Mihaljevic et al., 2007). However, whether, or to which

subgroup of patients, MVA improves long-term functional status and survival for patients

with chronic mitral regurgitation, remains debatable.

5.1.1 Patients

In this paper, we consider the problem of estimating individual treatment effects and de-

termining optimal treatment for ischemic cardiomyopathy. We base our analysis on data

from 1468 patients who were treated for ischemic cardiomyopathy at Cleveland Clinic
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from 1997 to 2007. Ischemic cardiomyopathy was defined as having severe left ventricular

systolic dysfunction with a measured or estimated ejection fraction of less than 30%. Of

the 1468 patients in the study, 386 underwent CABG, 360 SVR, 212 MVA, and 510 LCTx.

The primary outcome was all-cause mortality, including in-hospital mortality after surgical

procedures and interim deaths while awaiting transplantation. Mean duration of follow-up

was 3.8 years. See Yoon et al. (2010) for a detailed description of the data.

5.1.2 Approach

The observational nature of this study, which makes heterogeneity and confounding quite

likely, and the lack of overlap in treatment, required us to develop innovative causal

methodology for our analysis. Building on previous work of random forests for causal

inference (Wager and Athey, 2017; Lu et al., 2018), we propose a novel extension for esti-

mating the individual treatment effect (ITE) in observational survival data. The extension

to the survival setting from previous work (Lu et al., 2018), which looked at regression,

involved dealing with nuances unique to survival. The definition of ITE, for example, as

well as other quantities for estimating treatment effectiveness, are more complicated as

these values depend not only on patient pre-treatment variables, but also survival time. As

well, censoring had to be accommodated. Definitions and a framework for this extension

are given in Section 5.2. Another innovation involved dealing with patient treatment over-

lap. A unique feature of this particular data was that “expert” knowledge was available for

determining overlap. Section 4 describes new random forest methods for incorporating this

information ranging from being fully supervised, to partially supervised, for determining

overlap of treatment.

Section 5.5 describes our new ITE approach which is an extension of the virtual twins

random forests method proposed by Foster et al. (2011) Although virtual twins was orig-

inally described in the context of randomized studies involving continuous outcomes, the
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idea rests on a counter-factual framework which can be extended to ITE analysis for obser-

vational data (Lu et al., 2018). In order to extend the method to survival settings, we make

use of random survival forests (Ishwaran et al., 2008), and introduce an extension which

we call random survival forests virtual twins interaction. This strategy is different from

outcome weighted learning approaches (Zhao et al., 2012, 2014, 2017; Zhang et al., 2012;

Bai et al., 2017; Zhu et al., 2017) and inverse probability of censoring weighting (IPCW)

methods (Robins et al., 2008; Goldberg and Kosorok, 2012). This is because our approach

directly models the target outcome. This is often referred to as an outcome-regression ap-

proach (Robins, 1986, 2004; Murphy, 2003; Moodie et al., 2007; Qian and Murphy, 2011;

Hill, 2011; Lu et al., 2018). It is known that the performance of outcome-regression meth-

ods depends critically on the predictive performance of the estimated model. Parametric

models are likely to perform poorly in observational data settings due to complex inter-

actions, non-linear effects, and departures from model assumptions that are likely to be

at play. In contrast, random survival forests, which forms the basis of our approach, is a

nonparametric and highly robust procedure yielding accurate estimation of survival curves.

Lu et al. (2018) demonstrated that random forests, when cast in a virtual twins interaction

framework, is highly accurate for outcome-regression modeling.

5.1.3 Contributions and outline

There are several unique and innovative aspects to our work which we highlight below.

1. In Sections 2 and 5, we show that not only does the ITE provide us with insight into

personalized treatment, but it also directly yields population measures of treatment

effectiveness, such as the average treatment effect (ATE). In contrast, ATE estimates

are otherwise obtained indirectly using techniques such as matching or propensity

score (PS) analyses. For the latter, matching on the PS, stratification on the PS, or
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weighting with the PS are utilized (Austin, 2011). See Parast and Griffin (2017) for

advanced propensity score approaches for survival outcomes using landmark estima-

tion.

2. Hill and Su (2013) and McCaffrey et al. (2013) provide guidance for checking over-

lap in observational data. A unique feature of our study was the availability of expert

knowledge defining treatment eligibility. We use this to assess overlap using two

strategies (Section 4). One strategy, which is fully supervised, uses expert knowl-

edge in a novel multilabel analysis. The other strategy, partially supervised, estimates

overlap using treatment assignment.

3. Often lack of overlap results in sample size reduction, however we utilize all data

points in our outcome-regression strategy when estimating the conditional survival

function, thereby mitigating loss of statistical efficiency. Our approach does not use

treatment assignment probability to weight patients, but rather restricts consideration

of ITE to covariates where overlap holds.

4. We obtain direct estimates of potential outcome survival curves. This allows us to

dynamically view treatment effect as a function of time and yields important insight

in our analysis by visualizing treatment effectiveness over time over multiple treat-

ments simultaneously.

5. Section 3 draws a direct link between the ITE and the individualized treatment rule

(ITR) (Qian and Murphy, 2011). Importantly, our analysis is able to interpret these

rules in meaningful clinical terms and to identify functional relationships between

variables for multi-dimensional visualization of how patient information impacts

gain of life under optimal therapy.
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5.2 Treatment effect for observational survival data

In this section, we describe the formal framework and assumptions used for our causal in-

ference of observational survival data. Let {(X1, Z1, T1, δ1), . . . , (Xn, Zn, Tn, δn)} denote

the data, assumed to be independently distributed from a common distribution P, where

Xi denotes the covariate vector for individual i, (Ti, δi) is the observed survival outcome,

and Zi denotes i’s assigned treatment group. We asssume Zi is coded as an integer value

from {1, . . . ,M}, where M > 1 is the total number of available treatments. The individ-

ual’s survival data is as (Ti, δi), where Ti = min(T o
i , C

o
i ) is the observed survival time and

δi = 1{T o
i ≤Co

i } is the observed censoring variable. Here T o
i denotes the true event time

and Co
i the censoring time. We say i is right-censored at time Ti if δi = 0; otherwise the

individual is said to have an event at Ti.

5.2.1 Unconfoundedness

Without additional assumptions, it is generally not possible to estimate treatment effects

in observational studies. A standard assumption is unconfoundedness (Rosenbaum and

Rubin, 1983), which assumes all relevant covariates are available to the analyst and in

particular that there are no unmeasured covariates associated with both treatment and po-

tential outcomes. Unconfoundedness is typically formulated as a conditional independence

of treatment and potential outcomes, conditional on pre-treatment variables.

In our framework, the potential survival outcome is the potential event time T o(j) and

potential censoring time Co(j) under a given treatment Z = j. The potential survival out-

comes are related to the actual survival outcome (T o, Co) via the consistency assumption:

(T o, Co) =
M∑
j=1

1{Z=j}(T o(j), Co(j)). (5.1)
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We will assume a type of weak unconfoundedness, a less stringent assumption of uncon-

foundedness (Imbens, 2000). Weak unconfoundedness asserts conditional independence of

each potential outcome, and not the stronger assumption of joint-multivariate conditional

independence of the potential outcomes (Rosenbaum and Rubin, 1983). The following is a

slightly different formulation than used by Imbens (2000).

Definition 5.2.1. Weak unconfoundedness holds for treatment j at X = x if

P{T o(j) > t1, C
o(j) > t2 |X = x, Z = j} = P{T o(j) > t1, C

o(j) > t2 |X = x}

for any real valued t1, t2.

5.2.2 Treatment overlap

Another key concept in our development is treatment overlap.

Definition 5.2.2. Let pj(x) = P{Z = j|X = x}. Complete overlap for all treatments is

said to hold for x if pj(x) > 0 for j = 1, . . . ,M . Overlap between treatments j and k is

said to hold for x if pj(x) > 0 and pk(x) > 0. Finally, if pj(x) > 0, we say x satisfies

overlap for treatment j.

Treatment overlap is necessary to ensure covariate distributions between treatment

groups have common support, thereby ensuring treatment effectiveness can be estimated.

The function pj(x) is referred to as the propensity score in the casual literature. The propen-

sity score has many uses including dealing with the common support problem. One strategy

used to estimate population measures of treatment effectiveness is to construct estimators

using only those data that fall within a suitable range of propensity score values (Dehejia

and Wahba, 1999; Heckman et al., 1997, 1998; Morgan and Harding, 2006). The resulting

estimators are then interpreted within a narrower treatment effect perspective: the common
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support treatment effect (Heckman et al., 1997, 1998). In the analysis of individualized

treatment, as considered here, the assumption of overlap is required for counter-factual as-

signment to be plausible. By consistency (5.1), if overlap does not exist for treatment j,

then the potential outcome under treatment j is not plausible for x. Therefore, ITE analysis

for x must exclude j in treatment comparisons. We will come back to this point shortly.

We can conceptualize overlap as a binary function that identifies whether treatment j

can be administered to x. We formally define the overlap function as follows

oj(x) = 1{pj(x)>0}.

In practice, the propensity score is unknown and therefore must be estimated by some

estimator p̂j(x). Because this provides only an approximation, the overlap function should

be estimated using

ôj(x;C) = 1{p̂j(x)>C}, (5.2)

where 0 < C < 1 is an appropriately selected cutoff value.

Assessing overlap can be difficult (Hill and Su, 2013) and therefore it is useful to con-

sider methods other than the propensity score to achieve this goal. A unique feature of

our study was the availability of an expert database identifying patient eligibility for treat-

ment. This presented us with the opportunity to assess overlap using expert knowledge.

Let Ej ∈ {0, 1} denote eligibility for treatment j. Define ej(x) = Φ{Ej = 1|X = x} as

the eligibility probability defined by expert knowledge. Lack of overlap can be assessed by

the magnitude of ej(x): large values identify when overlap for j is highly likely. If these

probabilities are high across all treatments, it may be possible for
∑M

j=1 ej(x) > 1, thus

reflecting a high overlap in all treatment groups. This motivates the following empirical

estimator for overlap:

ôj(x;C) = 1{ε̂j(x)>C}, (5.3)
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where 0 < C < 1 is an appropriately selected cutoff and ε̂j(x) is an estimator for ej(x).

Section 4 discusses a novel multilabel procedure for obtaining estimates of ej(x). We

also describe a calibration method for determining threshold values C for (5.3) and also

for (5.2).

5.2.3 Ignorable treatment assignment

Now we return to the issue of how overlap affects ITE inference. In the causal litera-

ture, it is common to combine the assumption of unconfoundedness and overlap into a

single assumption. Rosenbaum and Rubin (1983) define strongly ignorable treatment as-

signment (SITA) as the combined requirements of strong unconfoundedness and treatment

assignment overlap; the latter often being referred to as the positivity condition. However,

positivity is a strong assumption as complete treatment overlap may not always exist. Even

in Imbens (2000), weak unconfoundedness is implicitly assumed to hold for all x, thus

implying the existence of all potential outcomes regardless of x. Neither of these assump-

tions are always realistic in multiple treatment settings (M > 2). This is because a specific

treatment, or set of treatments, may be implausible for certain x. This is certainly true for

ischemic cardiomyopathy where treatment option depends strongly on clinical make up of

a patient (for example, see Figure 5.1 which displays the eligibility status for our patients

determined by experts).

The important point is that even though certain treatments may be precluded for a given

x, ITE analysis is still possible as long as we consider treatment comparisons among treat-

ments satisfying overlap. To accommodate this scenario, we introduce a more flexible

definition of ignorable treatment assignment.

Definition 5.2.3. Weak ignorable treatment assignment (WITA) holds if weak unconfound-

edness holds for treatment j = 1, . . . ,M for all x satisfying overlap, {x : oj(x) = 1}.
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Figure 5.1: Number of patients eligible for treatment determined by expert knowledge

(total sample size, n = 1468). The many non-overlapping sets provides strong evidence of

lack of overlap.

WITA lifts the requirement that weak unconfoundedness must hold for all x. Thus,

it can be seen to be a slightly weaker condition than weak unconfoundedness of Imbens

(2000). This slightly more flexible definition is better suited for ITE inference and fits

naturally within our two-step approach to ITE estimation. In the first step, we estimate

the survival function using random survival forests, using all the data for all treatments

simultaneously without restrictions to the data regarding overlap of covariate distributions,

such as treatment assignment probability or eligibility probability. This allows us to use the

full sample size so as not to decrease efficiency of our survival function estimator. Overlap,

assumed by WITA, is then taken into account in downstream analyses (second step) of the

resulting estimated survival function. Thus, in assessing the ITE (Sections 2,4, 2.5) we only

consider treatment comparisons for x where overlap holds. The same is true for population

measures such as the ATE where we restrict its calculation to patients satisfying overlap

(see Section 2.6).
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5.2.4 Individual treatment effect (ITE)

We now define various useful quantities for assessing treatment effectiveness and show

how these can be estimated under our assumptions. We begin by providing a definition

for ITE in survival settings. Causal inference in survival settings typically focuses on a

specific time point, however we emphasize the dynamic aspect of treatment effectiveness

in the following definition of ITE which is a function of both x and t.

Definition 5.2.4. The individual treatment effect (ITE) at time t for covariate x for treat-

ment j over treatment k is

τj,k(t,x) = ψ
(
Sj

(
t|x), Sk

(
t|x)),

where ψ(·, ·) is a known function specified by the analyst (examples are given in Section

2.5), and Sl

(
t|x) = P{T o(l) > t|X = x} is the survival function for the potential outcome

T o(l) conditioned on X = x for l = j, k.

Combined with model identification and consistency, WITA ensures Sj(t|x) is es-

timable from the observed data. For all x satisfying overlap for treatment j,

Sj

(
t|x)

= P{T o(j) > t|X = x}

= P{T o(j) > t|X = x, Z = j} (weak unconfoundedness; t1 = t, t2 = −∞)

= P{T o > t|X = x, Z = j} (consistency (5.1))

= S
(
t|x, Z = j

)
,

where S(t|x, Z = j) is the survival function for T o conditioned on X = x and Z = j.

Model identifiability is required in order for the survival function S(t|x, Z = j) to be es-
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timable. We will rely on the standard assumption that time and censoring are conditionally

independent,

T o
i ⊥ Co

i |(Xi, Zi). (5.4)

Under this assumption, S(t|x, Z = j) is identifiable and estimable from the observed data,

and by the above, equals the potential outcomes survival function. Thus, the unobserv-

able potential outcomes survival function Sj(t|x) can be estimated by the survival function

S(t|x, Z = j) from the observable data under the assumption of consistency, conditional

independence of T o and Co, and the assumption of WITA.

Remark. We have assumed conditional independence on the actual survival outcomes,

which is a standard assumption, and therefore familiar to most readers. However, under

our assumptions, this implies conditional independence of the potential survival outcomes,

which is a condition we would naturally anticipate. For all x satisfying overlap for treat-

ment j,

P{T o(j) > t1, C
o(j) > t2 |X = x}

= P{T o(j) > t1, C
o(j) > t2 |X = x, Z = j} (weak unconfoundedness)

= P{T o > t1, C
o > t2 |X = x, Z = j} (consistency (5.1))

= P{T o > t1 |X = x, Z = j}P{Co > t2 |X = x, Z = j} (independence (5.4))

= P{T o(j) > t1 |X = x}P{Co(j) > t2 |X = x},

where the last line follows by a combined application of consistency and weak unconfound-

edness.
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5.2.5 Expressing the ITE in terms of the estimable survival function

Hereafter we will assume that consistency (5.1), independence (5.4), and WITA holds. By

the above, this implies the ITE for any two treatments j and k is estimable and can be

written as

τj,k(t,x) = ψ
(
S
(
t|x, Z = j

)
, S
(
t|x, Z = k

))
(5.5)

for all x satisfying overlap oj(x) = ok(x) = 1. Given an estimator Ŝ(t|x, Z) for the

survival function (which we will estimate using random survival forests), we estimate the

ITE by substituting Ŝ into ψ. Examples of ψ(·, ·) that can be used to define the ITE, include

τ
(1)
j,k (t,x) = S

(
t|x, Z = j

)− S
(
t|x, Z = k

)
, (5.6)

where ψ(a, b) = a − b, so that τj,k(t,x) is the difference of two survival curves. Another

way to measure ITE is through survival curve domination,

τ
(2)
j,k (t,x) = 1{S(t|x, Z = j) > S(t|x, Z = k)},

which corresponds to ψ(a, b) = 1{a>b}.

Andersen (2013) defines the expected number of years alive before time t0 as the sur-

vival function integrated from [0, t0] (also commonly referred to as the restricted mean

survival time, RMST (Irwin, 1949; Andersen et al., 2004; Royston and Parmar, 2011; Kim

et al., 2017). Typically, t0 is chosen to equal the maximum observed follow-up time. In a

similar manner, integrating over t ∈ [0, t0], we define the ITE before time t0 as

τj,k([0, t0],x) =

∫ t0

0

τj,k(t,x) dt. (5.7)
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For example, if τj,k(t,x) = τ
(1)
j,k (t,x), this can be interpreted as the difference in the RMST

for treatment j over k, thus assessing gain (or loss) in restricted lifetime in treatment j over

k.

5.2.6 Average treatment effect (ATE)

From the ITE we can directly calculate many useful quantities for assessing treatment ef-

fectiveness, such as the ATE.

Definition 5.2.5. The average treatment effect (ATE) at time t for treatment j over treat-

ment k is

τj,k(t) = E
[
τj,k(t,X)

∣∣oj(X) = 1, ok(X) = 1
]
. (5.8)

For example if τj,k(t,x) = τ
(1)
j,k (t,x), the ATE at time t, denoted as τ

(1)
j,k (t), equals

the conditional population average difference in survival curves at time t for treatment j

compared to k. If the ITE is τ
(2)
j,k (t,x), then the ATE is τ

(2)
j,k (t), which equals the conditional

population average domination of one survival curve over the other. Lack of overlap for

treatments j and k for a given x implies the existence of an individual with covariate x with

zero assignment probability for at least one of the treatments. Notice that the conditioning

in (5.8) excludes such cases, which only permits individuals satisfying overlap.

In a similar fashion to (5.7), we define the ATE before time t0 as

τj,k([0, t0]) =

∫ t0

0

τj,k(t) dt. (5.9)

For example if τj,k(t,x) = τ
(1)
j,k (t,x), this equals the average difference in RMST before t0,

which can be interpreted as the average gain (or loss) in restricted lifetime.
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5.3 Individualized treatment rules

In this section, we draw a direct connection between the ITE and the Individualized Treat-

ment Rule (ITR) (Qian and Murphy, 2011) to connect our work to the literature on optimal

treatment decision making. As in Qian and Murphy (2011) let R be some continuous real

valued quantity representing the target response, where larger values are better. An ITR

is a decision rule d : X → Z which maps an individual’s feature X ∈ X to the action

Z ∈ Z = {1, . . . ,M} of possible treatments. Denote the distribution of (X, Z, R) by Φ

and let Φd denote the distribution of (X, Z, R) constrained to Z = d(X). The expectation

of the target response, R, with respect to the distribution Pd is called the expected reward

for d, denoted by V (d). Assuming that p(Z|X) > 0 almost everywhere, it can be show that

(Qian and Murphy, 2011)

V (d) = E

[
1{Z=d(X)}
p(Z|X)

R

]
= E

[
Q0(X, d(X))

]
, (5.10)

where Q0(X, Z) = E(R|X, Z) is called the quality of treatment Z for X. The optimal

treatment dopt is the ITR in the space of decision rules D with maximum reward

dopt = argmax
d∈D

{
V (d)

}
.

To see how this is related to the ITE, define R to be the RMST; other choices are of

course possible:

R =

∫ t0

0

S
(
t|X, Z) dt.

The difference in quality of treatment under treatment j and k for X = x satisfying overlap



109

oj(x) = ok(x) = 1 is

Q0(x, Z = j)−Q0(x, Z = k)

=

∫ t0

0

S
(
t|x, Z = j

)
dt−

∫ t0

0

S
(
t|x, Z = k

)
dt

=

∫ t0

0

τ
(1)
j,k (t,x) dt := τ

(1)
j,k ([0, t0],x),

which is the ITE before t0 under τ
(1)
j,k and equals the expected gain (or loss) in restricted

years for x.

By the above, treatment j is prefered to treatment k for X = x if and only if Q0(x, Z =

j) > Q0(x, Z = k). It is clear because the optimal decision rule is

dopt(x) = argmax
{l:ol(x)=1}

{∫ t0

0

S
(
t|x, Z = l

)
dt

}
,

that dopt is uniquely determined by the ITE.

Thus our strategy for estimating dopt is the same as our strategy for estimating the ITE.

We use random survival forests to directly estimate the survival function S
(
t|x, Z = l

)
,

which provides not only an estimate for the ITE, but as we have now just shown, also an

estimate for the optimal treatment rule. This is different than strategies that have been

used up to this point. Even in Qian and Murphy (2011), which is an outcome-regression

approach like ours, we find differences. Putting aside that they consider clinical trial data

and focus on regression, an important distinction is that they estimate the conditional mean

for the response, which is used to estimate the optimal decision rule. This is unlike our

approach where we estimate the conditional survival function (i.e. viewed from a regres-

sion perspective, we are estimating the conditional distribution function rather than the

conditional mean). Another strategy used for estimating dopt is Outcome Weighted Learn-

ing (OWL, also refered as O-learning) (Zhao et al., 2012, 2014). This is different than
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our outcome-regression modeling. O-learning makes use of the first identity in (5.10):

E[R1{Z=d(X)}/p(Z|X)] and notes that maximizing this value is equivalent to minimizing

E[R1{Z �=d(X)}/p(Z|X)]. This can be viewed as a weighted classification problem with

binary outcomes 1{Z �=d(X)} and weights R/p(Z|X).

5.4 Assessing overlap using expert knowledge

As described in the introduction, a unique aspect of our study was the availability of expert

knowledge for assessing overlap. Guidelines used by experts for determining treatment

eligibility are provided in Table 5.2. Criteria used were based solely on clinical make up,

thereby allowing for objective treatment determination. Of our 1468 total patients, expert

knowledge judged 1082 (74%) patients to be eligible for CABG; 742 (50%) eligible for

SVR; 598 (41%) eligible MVA, and 671 (46%) eligible for LCTx. All patients were found

eligible for at least one treatment; 110 were eligible for all M = 4 treatments. Figure 5.1

presented earlier displays the number of eligible patients for the
∑4

j=1

(
4
j

)
= 15 possible

eligibility subsets.

Table 5.2: Expert knowledge used for determining treatment eligibility

Treatment Expert Knowledge Eligibility Criteria

CABG (a) Ischemic symptoms (angina); viable myocardium

with diseased but by-passable coronary arteries. If (a)

was not available, eligibility was determined using: (b)

ACC/AHA guidelines for CABG based on angina and

coronary artery disease.

SVR∗ Anterior wall akinesia/dyskinesia; left ventricular end-

diastolic diameter>6 cm.

MVA 3+/4+ mitral regurgitation (MR) present.

LCTx∗ Age<70 years; NYHA functional class III/IV; creatinine

level<1.7 mg·dL−1.

∗Treatments where expert knowledge is considered less accurate for determining

eligibility.
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The guidelines listed in Table 5.2 should be considered cautiously as they only represent

the current state of clinical knowledge of ischemic cardiomyopathy. There are scenarios

where no “gold standard” criteria or universal rules exist for defining treatment eligibility.

This is why, not surprisingly, we found instances in our data where expert decision differed

from actual treatment assignment. Take LCTx for instance. Each case is painstakingly

discussed at great length and multiple times as the actual decision is made to list a given

patient; there are a multitude of objective, subjective, geographic, and idiosyncratic reg-

ulations that govern transplantation beyond simple clinical criteria such as age. SVR is

another example. SVR is a complex non-standardized procedure that has both proponents

(particularly in Europe and on the West Coast of the U.S.) and skeptics as to its efficacy.

So indications for SVR procedure are controversial, even following the randomized trial of

SVR vs. CABG alone (Jones et al., 2009). Among the four treatments, only eligibility of

CABG and MVA can reasonably be considered as gold standard.

Let En×M = {Eij} denote the eligibility data from our n = 1468 patients for the

M = 4 treatments. Here Eij ∈ {0, 1} denotes individual i’s eligibility indicator for the jth

treatment. As discussed above, there may be patients for which expert eligibility status may

be suspect. Therefore, we adopt two different strategies for assessing overlap. In the first

strategy, which makes minimal use of expert knowledge, we estimate the propensity score

using a multiclass analysis (two different procedures are considered). Using the estimator

p̂j(x) we determine the threshold C for the overlap function ôj(x;C) = 1{p̂j(x)>C} by

making use of expert knowledge. Thus, strategy 1 uses En×M in a minimally supervised

way. In strategy 2, we adopt a multilabel approach and directly model En×M , thus making

full use of expert knowledge. We estimate ej(xi) = Φ{Ej = 1|X = xi}, the probability

that a patient with feature X = xi is eligible for treatment j. We then use expert knowledge

to determine the threshold C for the overlap ôj(x;C) = 1{ε̂j(x)>C}. The details are given

below.
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5.4.1 Random forest classification approach

Our first approach adopts strategy 1 and estimates the propensity score pj(x) = P{Z =

j|X = x} using a multiclass random forest analysis. Specifically, a random forest com-

prised of classification trees (RF-C) is constructed using treatment received, for the out-

come and patient covariates for the features. The propensity score is estimated using the

predicted probabilities from RF-C.

5.4.2 Random forest distance approach

Our second approach also follows strategy 1 and applies RF-C. However, in place of ran-

dom forest predicted probabilities to estimate pj(xi), we use a novel distance based mea-

sure. The general idea is to determine the likelihood patient i is assigned to treatment j by

using a new random forest distance to measure distance of i to treatment j patients. We

call this RF-D.

Typically, distance between individuals in random forests is estimated using proximity

(Breiman, 2001b). The proximity pi,i′ between individuals i and i′ is defined as the forest

average number of times i and i′ share a terminal node. However, proximity does not define

data distance accurately because it is too conservative. For example, two individuals i and

i′ may have terminal nodes that are side by side in a tree. Thus they differ only in their last

executed tree-node split. The definition of proximity does not take this into account and by

definition i and i′ are considered out of proximity with a maximal distance of one. Because

random forest trees are typically very deep, this means that the i and i′ in our example,

which are likely very close to one another, are assigned a maximal distance on the basis

of a deep split that is likely to be weak and of little consequence. In contrast, if i and i′

diverge quickly at a split occurring near the root node, which generally indicates a strong

difference between i and i′, they will also receive a maximal distance of one. Proximity
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does not distinguish between these two settings.

Therefore, we propose a new distance measure for forests. We define the distance

between two points i and i′ as the ensemble fractional distance across the forest to the

closest common ancestor of i and i′. More precisely, consider a single tree. Let dAi be the

count of the edges from i to the closest common ancestor of i and i′. Similarly, let dAi′ count

the edges from i′ to the closest (i, i′) common ancestor. Define DA
i,i′ = dAi + dAi′ . Let dRi and

dRi′ be the count of the edges from i and i′ to the root node and define DR
i,i′ = dRi + dRi′ . The

distance is defined as

di,i′ =
DA

i,i′

DR
i,i′
.

Thus, di,i′ = 0 if i and i′ are co-terminal. If the closest common ancestor of i and i′ is

the root node, then di,i′ = 1. In addition, notice that di,i′ ≤ 1 − pi,i′ and that distance is

symmetric (diagonal elements are di,i = 0).

Figure 5.2 provides an illustration of our new distance measure. Terminal nodes for i

and i′ are highlighted in red. The common ancestor node is denoted by NA and the root

node by NR. The distance is the ratio of the number of edges connecting the red nodes

to the ancestor, NA, to the number of edges connecting the red nodes to the root node,

NR. Thus di,i′ = (2 + 1)/(4 + 3) = 3/7. This should be compared to the distance under

proximity, which is 1− pi,i′ = 1.

The above describes distance for a single tree. The forest distance is defined as the

forest averaged distance, which we denote by di,i′ . We define the probability of assigning i

to treatment j by the closeness of i to treatment j patients,

p̂j(xi) =

∑
i′:Zi′=j(1− di,i′)∑

i′(1− di,i′)
.
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NR

NA

Ni

Ni′

Figure 5.2: Example illustrating random forest distance between i and i′.

5.4.3 Multivariate random forest multilabel approach

The previous two approaches are examples of strategy 1. Our third approach adopts strat-

egy 2 and utilizes expert knowledge by directly modeling En×M . Specifically, we estimate

ej(xi) = Φ{Ej = 1|X = xi} using {Ei,j} as multivariate outcomes in an M -dimensional

multivariate classification analysis with xi for features. Observe that the outcomes in

this approach an be viewed as multilabels and the results as a multilabel analysis. For

example, patient i could be eligible for two treatments CABG and SVR (the multilabel

{CABG, SVR} coded as (1, 0, 1, 0)), or patient j could be eligible for CABG, SVR, and

LCTx (multilabel {CABG, SVR, LCTx} coded as (1, 0, 1, 1)). We refer to this analysis as

MRF. We note that in our implementation we use multivariate random forests as in Ish-

waran and Kogalur (2017) which differs from Segal and Xiao’s (2011) definition.

5.4.4 Determining the cutoff for the overlap function and validation

When determining overlap, the value for the cutoff C will likely be subjectively chosen; for

example, by using a preset value such as C = 0.05 or C = 0.10. However, because expert
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knowledge was available in this study, we use this data to provide an objective means for

determining C.

Let ôj(xi;C) denote a procedures estimated overlap function. We define the misclassi-

fication error (ME) for the cutoff value C to be

ME =
1

n

1

M

n∑
i=1

M∑
j=1

1{Eij �=ôj(xi;C)}. (5.11)

The cutoff value for a procedure is chosen by finding that 0 < C < 1 which mini-

mizes (5.11). Note that to avoid over-training, we use out-of-bag (OOB) predicted values

for each of our procedures. In general, we use OOB estimated values from our forests

whenever possible as OOB estimates are known to be generally more reliable and more

accurate than inbag (in-sample) values (Breiman, 1998).

As we have remarked, RF-C and RF-D only minimally use eligibility data for determin-

ing the cutoff C. This is unlike MRF which uses eligibility data directly in its modeling

and for determining C. This semi-supervised utilization of expert knowledge is a useful

feature that can protect one from possible problems with expert knowledge databases. As

discussed, here some of the treatment decisions, such as LCTx and SVR, are highly con-

troversial and expert eligibility can disagree with actual treatment assignment.

On the other hand, CABG and MVA are treatments where expert knowledge is consid-

ered to be highly accurate. Therefore, it is interesting to develop a separate cutoff value

using only data from these two treatments. Let M ′ = {j1, j2} denote the subset of treat-

ment groups corresponding to CABG and MVA. The cutoff using the CABG and MVA

data is defined as follows:

C∗ = argmin
0<c<1

{
1

2n

n∑
i=1

∑
j′∈M ′

1{Eij′ �=ôj′ (xi;c)}

}
. (5.12)
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Table 5.3: Cutoff values for estimating treatment eligibility

Method
Cutoff

Value

Misclassification Error

CABG

MVA

All four

treatments

RF-C 0.08 0.26 0.32

RF-D 0.12 0.18 0.35

MRF 0.61 0.04 0.13
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C=0.12

0.13

C=0.52

Random Forest Classification (RF−C)
Random Forest Distance (RF−D)
Multivariate Random Forest (MRF)

Solid line = CABG and MVA
Dashed line = All four treatments

Figure 5.3: Misclassification error as a function of the cutoff value c. The minimum point

for each line is displayed above the line and its corresponding cutoff parameter ĉ is marked

below using C = ĉ.
The results from optimizing (5.11) and (5.12) for the three methods are displayed in

Table 5.3 and Figure 5.3. The dashed lines in Figure 5.3 correspond to the cutoff (5.11)

based on all four treatments; the solid lines correspond to (5.12) restricted to CABG and



117

MVA treatments. All dashed lines are generally above their corresponding solid lines,

which means that all of the three methods are able to estimate treatment eligibility for

CABG and MVA more accurately than over all four treatments. For RF-C and RF-D, both

the solid and dash lines reach their optimal values at relatively small cutoff values, thus

indicating they can robustly estimate treatment eligibility even when expert knowledge may

not be known, or even when expert knowledge is inaccurate. The new distance method,

RF-D, substantially outperforms RF-C for the restricted treatment optimization (5.12), and

while RF-C is slightly better than RF-D over all four treatments, we generally prefer RF-D.

Also, it is not surprising to find that MRF, which was trained on the expert data, is clearly

the best performer. This is especially true for the CABG/MVA treatment group (solid black

line).

5.4.5 Robustness

All random forests calculations were based on default tuning parameters using the R-

package randomForestSRC (Ishwaran and Kogalur, 2017). In particular, default node-

size parameter values of 1 and 3 were used for RF-C/RF-D and MRF calculations, respec-

tively. To assess robustness of cutoff values to tuning values, we recalculated the cutoff C∗

of (5.12) under different nodesize values. The results are displayed in Figure 5.4 (a). While

all methods were generally found robust to nodesize, RF-D was found to be especially

robust.

We also assessed robustness of estimated overlap indicator functions when the number

of treatment options was varied. For example, if we only consider CABG and SVR, how

well does each procedure perform in estimating the eligibility? That is, rather than using

information from all 4 treatments, what happens if we only use CABG and SVR informa-

tion for the forests defined in Sections 5.1, 5.2, and 5.3? Using the resulting C∗, what is

the concordance between the estimated eligibility and the expert knowledge in this case?
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Figure 5.4: (a) Cutoff value C∗ as function of random forest terminal node size; (b) OOB

concordance between estimated overlap indicators and expert knowledge under different

number of treatments. Subpanel (a) demonstrates general robustness to nodesize. Sub-

panel (b) shows that concordance for a given treatment is generally robust to the number of

treatments for MRF and RF-D but less so for RF-C. Definition for line types are given in

the legend; colors used are the same as the legend in panel (a).
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Figure 5.4 (b) displays the concordance for each treatment under all possible 2 treatment,

3 treatment, and 4 treatment scenarios. Ideally, we would like the concordance for a treat-

ment to remain the same regardless whether 2, 3, or 4 treatments were used. The results

show that MRF and RF-D are highly robust to the number of treatments, but RF-C less so.

In particular, RF-D has a higher concordance than RF-C for CABG and MVA. Because

this expert knowledge is considered accurate, this provides strong evidence of superiority

of RF-D to RF-C.

5.5 Counterfactual analysis using random survival forests

As we have discussed, our strategy is to estimate the survival function S(t|x, Z) using

random survival forests (Ishwaran et al., 2008). Specifically we use what we call random

survival forests virtual twins interactions (RSF-VT-I), named after the virtual twins ap-

proach of Foster et al. (2011). Virtual twins was originally introduced in the context of

randomized studies, however Lu et al. (2018) showed that virtual twins could be applied

to observational data and that treatment effect estimators for continuous outcomes from

virtual twins could be improved by adding all possible interactions between the treatment

variable Z and covariates X to the design matrix. The extension of this method to the

survival setting is what we call RSF-VT-I.

To obtain RSF-VT-I counter-factual estimates, we run random survival forests, but

where independent variables are taken to be the original features as well as all (Z,X)

interactions. To obtain a counterfactual estimate of τj,k(t,xi), we create a virtual twin data

point, similar in all regards to i’s original data (xi, Zi), but with the observed treatment

replaced with a counterfactual treatment. Specifically, suppose that Zi = j. We calculate

the OOB estimated survival value Ŝ∗(t|xi, Zi = j) based on i’s original (unaltered) data.

We then obtain i’s counterfactual estimate defined as Ŝ(t|xi, Z = k) by using i’s original
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xi feature but with i’s treatment altered to equal Z = k. The counterfactual ITE estimate

is defined as

τ̂ ∗j,k(t,xi) = ψ
(
Ŝ∗(t|xi, Z = Zi = j), Ŝ(t|xi, Z = k)

)
.

In a similar fashion if Zi = k, the counterfactual estimate is

τ̂ ∗j,k(t,xi) = ψ
(
Ŝ(t|xi, Z = j), Ŝ∗(t|xi, Z = Zi = k)

)
.

Useful measures of treatment effectiveness derived from the ITE are the ATE at time

t (5.8) and the ATE before time t0 (5.9). These values are estimated by using ITE OOB

estimates as follows:

τ̂ ∗j,k([0, t0]) =
∫ t0

0

τ̂ ∗j,k(t) dt (5.13)

where

τ̂ ∗j,k(t) =
1
n

∑n
i=1 1{ô∗j (xi;C)=1,ô∗k(xi;C)=1}τ̂ ∗j,k(t,xi)

1
n

∑n
i=1 1{ô∗j (xi;C)=1,ô∗k(xi;C)=1}

and ô∗l (xi;C) are OOB estimates of the overlap function.

Another important concept for treatment decision support is treatment effect on the

treated.

Definition 5.5.1. The average treatment effect on the treated (ATT) at time t for the treated

j, for treatment j over treatment k, is

τ
j k(t) = E

[
τj,k(t,X)

∣∣Z = j, oj(X) = 1, ok(X) = 1
]
.

Likewise, the ATT for the treated k, for treatment j over k, is

τj k (t) = E
[
τj,k(t,X)

∣∣Z = k, oj(X) = 1, ok(X) = 1
]
.
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Furthermore, define the ATT before time t0 as

τ j k([0, t0]) =

∫ t0

0

τ j k(t) dt, τj k ([0, t0]) =

∫ t0

0

τj k (t) dt.

We estimate these quantities using OOB values. For example, to estimate τ j k(t), we

use

τ̂ ∗
j k(t) =

1
n

∑n
i=1 1{Zi=j}1{ô∗j (xi;C)=1,ô∗k(xi;C)=1}τ̂ ∗j,k(t,xi)

1
n

∑n
i=1 1{Zi=j}1{ô∗j (xi;C)=1,ô∗k(xi;C)=1}

. (5.14)

5.5.1 Results

Figure 5.5 displays ATE and ATT estimates (5.13) and (5.14) from the RSF-VT-I analy-

sis. All forest estimates were calculated using the R-package randomForestSRC (Ish-

waran and Kogalur, 2017) which provides a general implementation of Breiman random

forests (Breiman, 2001b). Complete overlap was defined using the cutoff criteria C ob-

tained by optimizing (5.12) restricted to the CABG/MVA treatment groups. We could have

optimized (5.11), but as we have discussed, expert knowledge could only be considered as

gold standard for the CABG and MVA treatment groups. Furthermore, Figure 5.3 shows

that the optimized C for RF-C and RF-D are nearly the same under (5.11) and (5.12), and

for MRF, performance is robust to C.

ATE and ATT estimates in Figure 5.5 are displayed for eligibility defined by each of

the methods, RF-C, RF-D, and MRF. All values are based on the ITE, τ
(1)
j,k (t,x), defined as

the difference between two survival curves (5.6). Thick lines display estimates using MRF

eligibility, thin dashed lines with circles are based on RF-C, and thick dashed lines with

triangles are derived from RF-D eligibility. Generally, RF-D and MRF values agree, while

RF-C differs substantially for certain treatment comparisons. This confirms our analysis

from the previous section which suggested RF-D to be superior to RF-C. Also, because

RF-D generally matches MRF, we can trust that MRF is not biased by inaccurate eligibility
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Figure 5.5: ATE (5.13) and ATT (5.14) estimated values where overlap was determined

using the three methods RF-C, RF-D, and MRF. Each subfigure title indicates the pairwise

comparison for treatment j versus k. Black lines are ATE values τ̂ ∗j,k(t); blue and red lines

are ATT values, where blue is τ̂ ∗
j k(t), where j is the treated group, while red is τ̂ ∗j k

(t), where

k is the treated group.
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Interpreting the ATE and ATT

To understand Figure 5.5, and what it is saying about treatment effectiveness, it is helpful

to focus on one of the subfigures. Take panel (a) for instance, which displays the treat-

ment effect for CABG compared to SVR. Our chosen measure of treatment effectiveness

is τ
(1)
j,k (t,x), which means the values display the difference between the survival function

for CABG compared to SVR. Values above zero signify when CABG is the preferred treat-

ment. The black line is the ATE and represents the average treatment effect for patients

eligible for both treatments, the blue line is the ATT for patients who received CABG

and were eligible for SVR, while the red line is the ATT for patients who received SVR

and were eligible for CABG. What we see is that regardless of the treatment assignment,

the ATT generally tracks the horizontal zero line, with low variability. This is in contrast

to other subfigures, where the magnitude of treatment effect is generally in the range of

5-10%, or higher. Treatment effect for CABG and SVR in subfigure (a) has the lowest

magnitude, which reflects the controversy of SVR (Jones et al., 2009).

In general, the dynamics of treatment effect over the various subpanels is interesting.

For ease of description, let us focus on interpreting values based on MRF eligibility (as

discussed above, we can be confident in this eligibility classification). We observe that

all ATT and ATE lines pass zero at some time point except for subfigure (d). When the

various lines pass zero, the two survival curves under the two treatments cross each other,

which generally implies that one treatment is beneficial in the short term, while the other

treatment is beneficial in the long term. Take subfigure (f) for instance. The blue line, which

represents patients who received MVA, crosses zero at around the third year, meaning that

MVA is only beneficial in the first three years. This suggests, that if possible, LCTx should

always be recommended over MVA. However, it may be impossible to give LCTx to all

these patients due to the limited number of transplant donors. This seems to be the case,

because the current recommendation of LCTx (red line) has already selected many suitable
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patients, who greatly benefit from LCTx (red line is below zero for almost all t).

Average number of months alive

The areas under the black, blue, and red lines of Figure 5.5 equal the ATE and ATT before

t0 (the maximum observed follow-up time), and thus represent the difference in number

of years alive before t0 (here t0 = 9.36 years). We describe these values below, but first,

because the notation for the ATE and ATT before t0 will be awkward to work with, we

introduce the following simplified notation:

ATEo
jk = τj,k([0, t0]) ATE before t0 (black line)

ATTo
jk = τ j k([0, t0]) ATT before t0 where j is the treated (blue line)

ATTo
kj = τj k

([0, t0]) ATT before t0 where k is the treated (red line).

Table 5.4 summarizes these values (for convenience, values have been converted to patient

months). Values for ATEo
jk are given for eligibility determined using MRF, RF-C, and RF-

D. For simplicity, ATTo
jk values are provided only for MRF. For ATEo

jk, we find values

calculated using MRF and RF-D are closer to those than RF-C. Once again, this reflects

a lack of accuracy of RF-C. To interpret Table 5.4, consider the first row for ATTo
jk and

ATTo
kj , corresponding to CABG versus SVR (panel (a) of Figure 5.5). For patients who re-

ceived CABG (ATTo
jk), on average they lose 2.67 months (standard error, 3.74) than if they

had received SVR; such a loss is not statistically significant. For patients receiving SVR

(ATTo
kj), they gain 0.7 months of life (standard error, 0.93). This is also not statistically

significant.

Generally speaking, when the blue line is above zero and the red line is below zero

in Figure 5.5, and when ATTo
jk is positive and ATTo

kj is negative in Table 5.4, the current

treatment decision is supported by evidence, because on average, patients received the
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Table 5.4: Difference in number of months alive before maximum follow-up time, t0 =
9.36 years.

Treatment j vs. k
ATEo

jk ATTo
jk ATTo

kj

MRF RF-C RF-D Mean SE Mean SE

(a) CABG vs. SVR 0.31 0.29 0.60 -2.67 3.74 0.70 0.93

(b) CABG vs. MVA 4.88 5.06 5.21 4.20 2.89 5.02 1.55

(c) CABG vs. LCTx 0.85 3.67 3.50 5.85 2.26 -0.74 1.11

(d) SVR vs. MVA 5.95 5.49 5.47 5.97 1.41 5.70 5.61

(e) SVR vs. LCTx -1.40 -0.55 -1.08 2.57 1.52 -4.81 1.53

(f) MVA vs. LCTx -11.80 -6.08 -6.81 -0.84 2.62 -14.97 1.36

treatment most beneficial to them. For example, this is what happens in subpanels (c) and

(e).

Treatment effect heterogeneity

Standard errors in Table 5.4 were calculated using subsampling. We used a 25% subsam-

pling rate with 1000 replications. Subsampling can also be used to calculate confidence

regions for ITE. Confidence intervals for ITE at the fifth year are provided in Figure 5.9.

Figure 5.5 only gives us general treatment information without details of treatment effect

heterogeneity. Treatment effect heterogeneity can be tested through regression models.

Previous studies typically regress the outcome on the covariates using experimental data.

Crump et al. (2008) use regression within each treatment group and test whether treatment

effect conditional on covariates is identical for all subpopulations; that is, they test the null

hypothesis that there is no heterogeneity in average treatment effects among subpopula-

tions defined by covariates. Imai and Ratkovic (2013) detect treatment effect heterogeneity

through detecting interaction terms between treatment variable and pre-treatment covari-

ates. We regressed the ITE on the pre-treatment covariates and used subsampling to derive

confidence intervals for each coefficient. The results are shown in Figures S2 and S3 of

Supplementary Materials. Significant coefficients suggest evidence of heterogeneity. All 6
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treatment comparisons show evidence of heterogeneity.

Subgroup analysis

Subgroup analysis is needed when there is treatment effect heterogeneity. The goal of sub-

group analysis is to find features related to treatment effect to better guide patient treatment

decision making. We use patients who received either treatment j or k and who were eligi-

ble for both treatments, and fit a bump hunting model (Friedman and Fisher, 1999; Duong,

2015). To improve efficiency of the algorithm, we only used variables found important by

using random forest variable selection. Variables were identified using variable importance

using a random forest regression model in which the estimated ITE was used for the out-

come and all pre-treatment covariates as independent variables. Results from the subgroup

analysis are provided in Table 5.5.

Future researchers can use these criteria to conduct randomized controlled trial as fur-

ther validation of subgroup treatment effect. We did not find subgroups with a positive

treatment effect of MVA. Since Table 5.4 shows a large negative treatment effect of MVA,

we conclude that fewer patients should be assigned to MVA.

Optimal individual treatment decisions

The previous analysis focuses on average effect. Here we now consider patients on a case-

by-case basis to determine if they received optimal treatment. For each patient i, with

covariate xi, we calculated RMST before t0,

R̂i,j =

∫ t0

0

Ŝ
(
t|xi, Z = j

)
dt,

where Ŝ was the estimated survival function defined as the forest OOB estimate when Z =

Zi was actual treatment assignment, and the forest predicted estimate when Z �= Zi was a
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Table 5.5: Subgroup detection using bump hunting after variable selection. CATEo
jk equals

the conditional ATE before t0, conditioned on subgroup criteria.

Treatment j vs. k Subgroup CATEo
jk/ATEo

jk Size/Total % in j % in k

CABG vs. SVR BSA>2.23 -4.08/0.31 44/246 28.57 16.51

CABG vs. SVR Regurgitation Grade>0 -7.26/0.31 31/246 10.71 12.84

CABG vs. LCTx

Blood Urea Nitrogen<30

Creatinine<1.8

BMI>27.04

GFR>44.75

5.31/0.85 125/406 59.18 21.75

SVR vs. LCTx

Blood Urea Nitrogen<25

LDL<133.31

BSA>1.83

BMI>27.77

55.29<GFR<120.80

7.66/-1.40 60/292 30.37 12.10

BSA=body surface aera (m2); BMI=body mass index; GFR=glomerular filtration rate;

LDL=low-density lipoprotein cholesterol.

counterfactual assignment. The optimal treatment d̂opt(xi) was defined as the treatment j

with maximal R̂i,j over those treatments for which i satisfied overlap (defined using MRF).

Figure 5.6 displays the numbers for patients who correctly received optimal therapy

and those who would have benefited from an alternate optimal therapy for which they

satisfied overlap. Years gained under alternate optimized therapy are displayed as “gain”

(specifically, gain equals R̂i,ji − R̂i,Zi
where ji is the optimal therapy for i). For example,

for patients receiving CABG (top left plot), only 21% would have benefited from another

therapy, thus showing CABG is generally being assigned correctly. An example where

treatment assignment is generally poor is MVA (bottom left plot), where 64% of patients

receive suboptimal treatment. For a large fraction of these (n = 95), the optimal treatment

is CABG, with an average gain of more than 1 year of restricted life. The superiority of

CABG over MVA agrees with our previous ATE and ATT analysis, Figure 5.5(b) and Ta-

ble 5.4 line (b), although the magnitude of effect of 1 restricted year gained is much higher

than suggested by the ATE/ATT analysis; thus demonstrating the importance of evaluating
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Patients receiving CABG

n=305

     n=18
        gain=10M

     n=13
        gain=11M

     n=50
        gain=5.8M

CABG
SVR

MVA
LCTx

Overall, 21% potentially gain 9.2 months (M=months)

Patients receiving SVR

     n=126
        gain=9.3M

n=313

     n=18
        gain=7M

     n=53
        gain=10.4M

CABG
SVR

MVA
LCTx

Overall, 39% potentially gain 9.2 months (M=months)

Patients receiving MVA

     n=95
        gain=13.4M

   n=18
  gain=10.4M

n=76

     n=23
        gain=14.7M

CABG
SVR

MVA
LCTx

Overall, 64% potentially gain 13.1 months (M=months)

Patients receiving LCTx

     n=107
        gain=9.8M

     n=33
        gain=10.3M

     n=25
        gain=7.9M

n=195

CABG
SVR

MVA
LCTx

Overall, 46% potentially gain 9.8 months (M=months)

Figure 5.6: Identifying patients who received optimal treatment and those who did not.

Optimal therapy is defined as treatment maximizing restricted mean survival time (RMST).

Pie charts display gain in months for alternative optimized therapies and their respective

sample sizes. If optimized treatment is the assigned treatment, gain is defined as zero.
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gain under individual optimized overlap therapy. Another example of a problematic ther-

apy is LCTx (bottom right plot), where 46% of patients received a non-optimal treatment.

A sizeable fraction of these (n = 107) would have been better off with CABG, with an

average restricted life gain of almost 10 months.
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Figure 5.7: Gain in months for patients who received SVR but where optimal therapy was

CABG. Gain is plotted against hematocrit level and angina pectoris grade.

It is also interesting to consider patients who received SVR. Although a reasonably

large fraction receive the correct therapy (61%), there is a sizeable population (n = 126)

that would have benefited from CABG. This is interesting as SVR versus CABG is contro-

versial. Looking at those patients that would have benefited by CABG, we find that their

improved survival is strongly related to preoperative grade of angina pectoris (Canadian

Cardiovascular Society grading scale) and preoperative hematocrit. In particular, there are

sizeable gains for CABG when hematocrit levels are low and when there is strong evidence

of angina (Figure 5.7). We believe these findings are important and useful to treatment



130

management for ischemic cardiomyopathy.

Treatment decisions

Figure 5.8 summarizes our methodology and conclusions for treatment decision making.

When ATT lines (blue and red lines) merge in Figure 5.5, this indicates that current rec-

ommendations for therapy do not alter treatment effect. This occurs for subfigures (a), (b),

and (d). For (a) CABG vs. SVR, because Figures 5.9 and 5.10 identify heterogeneity, a

subgroup analysis was conducted. This showed SVR benefits patients with larger body

surface area and with higher aortic valve regurgitation grade. For these patients, treatment

decision should be modified. Regardless of whether ATT blue and red lines in Figure 5.5

merge, ideally we would want the blue line to be on top of the red line and above zero.

Otherwise, current treatment decision is not supported by evidence. For example, sub-

figure (a) suggests that current treatment decision for SVR is slightly worse than random

assignment. For (b) CABG vs. MVA, (d) SVR vs. MVA, and (f) MVA vs. LCTx, Table 5.4

and Figure 5.9 demonstrate that most patients do not benefit from MVA. We conclude that

current treatment decision should be modified: in general, fewer patients should be as-

signed to MVA. When blue and red ATT lines do not merge in Figure 5.5, with the blue

line above, and when ATTj is positive and ATTk is negative in Table 5.4, patients are bene-

fiting from their treatment and the current treatment decision is supported by evidence. For

(c) CABG vs. LCTx, and (e) SVR vs. LCTx, current treatment decision is supported by

evidence. However, Figures 5.9, 5.10, and 5.11 indicate presence of heterogeneity for these

groups. Table 5.5 shows that the Conditional Average Treatment Effect (CATE) for certain

subgroups differ from their ATE values of Table 5.4, thus showing that current treatment

decision can be improved.
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5.6 Concluding remarks

Estimation of treatment overlap and individual treatment effects play an essential role in

causal inference and therapy management, such as in the case of ischemic cardiomyopathy.

A contribution of this paper is to offer estimation methods for assessing treatment overlap

under the scenario that some treatments may have either gold standard expert knowledge,

or controversial knowledge for judging eligibility. We described a novel fully supervised

multilabel procedure and a novel distance based multiclass semi-supervised procedure as

new tools to complement and improve upon the conventional multiclass approach of as-

sessing overlap using estimated treatment assignment. Subject matter knowledge available

in observational data studies should be viewed as a powerful tool that can be incorporated

into causal analyses and our novel strategies for systematically utilizing such information

may prove highly useful. Another contribution is our direct outcome-regression approach

to estimating the individual treatment effect (ITE) and the individualized treatment rule

(ITR). Our approach leverages powerful machine learning methods such as random forests

and random survival forests to provide a direct approach to this challenging issue. An-

other unique aspect of our work is the ability to view treatment effectiveness as a dynamic

process. In the case of survival data this provides an important tool for assessing and under-

standing treatment differences, especially when multiple treatments are at play. Applying

our methodology to a large observational survival data set, we studied the current standards

for treatment management of ischemic cardiomyopathy, and found standard treatment man-

agement was not always optimal, and in some cases, even suboptimal. We believe our

findings of non-optimal therapy management are not unique to ischemic cardiomyopathy

and that this problem may be more common than generally appreciated. Our methodol-

ogy is general and easily applied with available public software and can be instrumental in

studying this issue.



132

M
o

d
el

O
u

tc
o

m
e

D
et

er
m

in
e

E
li

g
ib

il
it

y

E
st

im
at

e
S
(t
|X

,Z
)

u
si

n
g

R
S

F
-V

T
-I

U
se

M
R

F
o

r
R

F
-D

to
d

et
er

m
in

e
el

ig
ib

il
it

y

E
st

im
at

e
IT

E
C

A
B

G

S
V

R

H
T

ex
is

ts
;

S
V

R

su
p

er
io

r

su
b

g
ro

u
p

s
ex

is
t

e.
g

.
A

ss
ig

n
L

ar
g

er

B
o

d
y

S
u

rf
ac

e

A
re

a
P

at
ie

n
ts

to
S

V
R

C
A

B
G

L
C

T
x

H
T

ex
is

ts
;

C
A

B
G

su
p

er
io

r

su
b

g
ro

u
p

S
u

p
p

o
rt

C
u

rr
en

t

T
re

at
m

en
t

D
ec

is
io

n

S
V

R

L
C

T
x

H
T

ex
is

ts
;

S
V

R

su
p

er
io

r

su
b

g
ro

u
p

S
u

p
p

o
rt

C
u

rr
en

t

T
re

at
m

en
t

D
ec

is
io

n

C
A

B
G

M
V

A

S
V

R

M
V

A

H
T

ex
is

ts
;

C
A

B
G

,
S

V
R

an
d

L
C

T
x

ar
e

al
l

su
p

er
io

r
to

M
V

A

S
u

g
g

es
t

L
es

s
P

at
ie

n
ts

b
e

A
ss

ig
n

ed
to

M
V

A

M
V

A

L
C

T
x

H
et

er
o

g
en

it
y

(H
T

) Y
es

N
o

D
et

ec
t

S
u

b
g

ro
u

p

M
o

d
if

y
o

r
S

u
p

p
o

rt

T
re

at
m

en
t

D
ec

is
io

n

F
ig

u
re

5
.8

:
P

ar
ad

ig
m

fo
r

In
d
iv

id
u
al

C
au

sa
l

In
fe

re
n
ce

an
d

T
re

at
m

en
t

D
ec

is
io

n
M

ak
in

g
fo

r
Is

ch
em

ic
C

ar
d
io

m
y
o
p
at

h
y.



133

(a) CABG vs. SVR
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(b) CABG vs. MVA
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(c) CABG vs. LCTx
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(d) SVR vs. MVA
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(e) SVR vs. LCTx
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Figure 5.9: Confidence intervals for individual treatment effects (5.5) at t = 5 years. Each

subfigure indicates a pairwise comparison for treatment j versus k. Red and blue indicate

patients with significant treatment effect (p-value < .05), where blue are from treatment j
group and red are from treatment group k. Thus, blue and red boxes correspond to some of

the patients from blue and red lines in Figure 5.5. Survival curve domination is defined as

τ
(2)
j,k (t).
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(a) CABG vs. SVR

Intercept (Overall Treatment Effect)
Hypertension

Diabetes: Insulin Dependent 
Diabetes: Non−Insulin Dep. 

Smoking
Atrial Fibrillation/Flutter

Complete Heart Block/Pacer (EKG)
Ventricular Arrhythmia (EKG) 

Peripheral Vascular Disease
Carotid Disease 

Popliteal Disease
Chronic Obstructive Pulmonary Disease

Renal Disease
Blood Urea Nitrogen

Creatinine
Hematocrit

Bilirubin
Cholesterol

Triglycerides
HDL Cholesterol 
LDL Cholesterol

Maximum Left Main Trunk Stenosis
Maximum Left Ant. Descending Stenosis

LCX system disease (%)
Maximum Right Coronary Artery Stenosis

Total Number Cardiac Operations
Stroke/Cerebral Vascular Accident

Congestive Heart Failure
Most Recent MI to Index Op

Minimum EF
Females

Calculated Age
Body Surface Area (m^2)

Body Mass Index
Race: White/Caucasian 

Race: Other
Treated Diabetes

Left main disease ge 50%
Left main disease ge 70%

Left main disease gt 0%
LAD system disease ge 50%
LAD system disease ge 70%

LAD system disease gt 0%
LCX system disease ge 50%
LCX system disease ge 70%

LCX system disease gt 0%
RCA system disease ge 50%
RCA system disease ge 70%

RCA system disease gt 0%
Number of systems diseased ge 50%

1/1/1997 to Index Op
LV dysfun: from Cath or Echo

Glomerular filtration rate (MDRD)
NY Heart Assoc. Functional Class 1
NY Heart Assoc. Functional Class 2
NY Heart Assoc. Functional Class 3

Canadian Angina Class 1
Canadian Angina Class 2
Canadian Angina Class 3
Canadian Angina Class 4

CVIR Aortic Valve Regurg Grade 1
CVIR Aortic Valve Regurg Grade 2
CVIR Mitral Valve Regurg Grade 1
CVIR Mitral Valve Regurg Grade 2
CVIR Mitral Valve Regurg Grade 3
CVIR Mitral Valve Regurg Grade 4

CVIR Tricuspid Valve Regurg Grade 1
CVIR Tricuspid Valve Regurg Grade 2
CVIR Tricuspid Valve Regurg Grade 3
CVIR Tricuspid Valve Regurg Grade 4

−0.4 −0.2 0.0 0.2 0.4

(b) CABG vs. MVA

−0.4 −0.2 0.0 0.2 0.4

(c) CABG vs. LCTx

−0.4 −0.2 0.0 0.2 0.4

Figure 5.10: Confidence intervals for coefficients from linear regression of estimated in-

dividual treatment effect for pairwise comparison of treatment j versus k. Regression in-

cluded patients receiving either treatment j or k and who were eligible for both treatments.

For each variable, there are 4 boxplots corresponding to coefficients for that variable for

t = 2, 4, 6, 8 (years).
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(d) SVR vs. MVA

Intercept (Overall Treatment Effect)
Hypertension

Diabetes: Insulin Dependent 
Diabetes: Non−Insulin Dep. 

Smoking
Atrial Fibrillation/Flutter

Complete Heart Block/Pacer (EKG)
Ventricular Arrhythmia (EKG) 

Peripheral Vascular Disease
Carotid Disease 

Popliteal Disease
Chronic Obstructive Pulmonary Disease

Renal Disease
Blood Urea Nitrogen

Creatinine
Hematocrit

Bilirubin
Cholesterol

Triglycerides
HDL Cholesterol 
LDL Cholesterol

Maximum Left Main Trunk Stenosis
Maximum Left Ant. Descending Stenosis

LCX system disease (%)
Maximum Right Coronary Artery Stenosis

Total Number Cardiac Operations
Stroke/Cerebral Vascular Accident

Congestive Heart Failure
Most Recent MI to Index Op

Minimum EF
Females

Calculated Age
Body Surface Area (m^2)

Body Mass Index
Race: White/Caucasian 

Race: Other
Treated Diabetes

Left main disease ge 50%
Left main disease ge 70%

Left main disease gt 0%
LAD system disease ge 50%
LAD system disease ge 70%

LAD system disease gt 0%
LCX system disease ge 50%
LCX system disease ge 70%

LCX system disease gt 0%
RCA system disease ge 50%
RCA system disease ge 70%

RCA system disease gt 0%
Number of systems diseased ge 50%

1/1/1997 to Index Op
LV dysfun: from Cath or Echo

Glomerular filtration rate (MDRD)
NY Heart Assoc. Functional Class 1
NY Heart Assoc. Functional Class 2
NY Heart Assoc. Functional Class 3

Canadian Angina Class 1
Canadian Angina Class 2
Canadian Angina Class 3
Canadian Angina Class 4

CVIR Aortic Valve Regurg Grade 1
CVIR Aortic Valve Regurg Grade 2
CVIR Aortic Valve Regurg Grade 3
CVIR Mitral Valve Regurg Grade 1
CVIR Mitral Valve Regurg Grade 2
CVIR Mitral Valve Regurg Grade 3
CVIR Mitral Valve Regurg Grade 4

CVIR Tricuspid Valve Regurg Grade 1
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(e) SVR vs. LCTx
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(f) MVA vs. LCTx

−0.4 −0.2 0.0 0.2 0.4

Figure 5.11: Linear regression results continued from Figure 5.10.
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