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ABSTRACT 
Background: We developed statistical methods to estimate individual-specific treatment effects 
(TEs) that can be used to find patient, clinical, and contextual characteristics that define 
subgroups that are more or less likely to respond to a treatment. This research supports 
PCORI’s call for the development of analytic approaches and guidance for predictive 
approaches to the heterogeneity of TEs (HTE). 

Objectives: Aim 1 was to develop comprehensive methodology (a) to estimate individual TEs 
(ITEs) for patients using counterfactual random forest (RF) machines for heterogeneous data, 
which (b) work across differing magnitudes of HTE, when (c) data are observational with 
potential confounding, and (d) with survival outcomes and multiple treatment comparisons. 

Aim 2 was to develop software to implement these new methods in a wide array of 
comparative effectiveness research applications by adding functionality to the existing CRAN-
distributed randomForestSRC package developed by our group, a package in its fifth release at 
the beginning of this project. 

Methods: Our approach to the estimation of ITEs builds on Rubin’s causal model using a 
counterfactual approach and expands this approach from a focus on uncovering average TEs 
(ATEs) to use on ITEs. Aims 1a through 1c were each addressed with a series of simulations. Aim 
1a compared RF estimations using a variation of the virtual twin (VT)1 approach with both a 
multiple-imputation approach2 and Bayesian additive regression trees (BART)3 to estimate ITEs 
assuming random assignment to treatment. Various models for generating heterogeneity were 
tested with complex interaction effects. Aim 1b varied the amount or size of HTE, sample size, 
random error, and level of prognostic covariates (which predict outcome regardless of 
treatment). Aim 1c compared 7 different RF-based approaches, 2 that were VT based,1 a 
bivariate RF-based imputation approach,4 counterfactual RF,5 counterfactual synthetic RF, 
causal RF,6 and BART3 on confounded data. In all cases, the results were examined conditional 
on the propensity score to show that methods performed well across the distribution of 
propensity (including regions where confounding was highest). Aim 1d was addressed with an 
application to an observational clinical cohort of patients with ischemic cardiomyopathy. This 
application compares 4 different treatments, explicitly models overlap in the patient 
population, and incorporates expert knowledge. This procedure first estimates a propensity 
score for treatment assignment and then uses a new distance-based RF algorithm that creates a 
measure of distance among the patients in the sample using an unsupervised RF algorithm. 
Calibration creates cut points for the inclusion of particular individuals in particular treatment 
comparisons. 

Results: The results for aim 1a showed that both RF and BART performed well with no mean 
bias in ITE estimates, with BART having the smallest root mean square error (RMSE) across 
simulations. Multiple imputation showed substantial bias for 1 data generation model and had 
the highest RMSE across simulations. The results for aim 1b showed that as the size of both 
prognostic factors that predict outcome (but not differential outcome across treatments) 
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and/or random error increases, so does the length of the confidence intervals around ITE 
estimates. Similarly, as the amount of heterogeneity increases, so do the individual confidence 
intervals for ITE estimates. We identified an edge bias phenomenon, wherein RF ITE estimates 
have increasing bias toward the ATE as the true TE becomes more extreme (ie, further from the 
ATE). The results for aim 1c showed that RF procedures performed well with observational 
confounded data as long as the confounders were in the feature set. Further, we found that 
synthetic RF had the lowest bias and smallest RMSE of the methods compared. BART had nearly 
as good performance as that of synthetic RF. Finally, the results of aim 1d showed that RF 
methods can estimate ITE with survival outcomes and multiple treatment comparisons. With 
survival outcomes, the ITE is a difference in survival functions, leading to multiple points of 
comparison and potential reversals between early and later dominance of different treatments. 

Conclusions: RF is a flexible method that can be used to estimate ITEs; however, there are 
situations in which other methods may outperform RF. Future research should examine ways of 
assessing when particular methods are optimal.  

Limitations: RF estimators of ITEs have mean bias across the distribution of ITEs at or near zero 
in most data generation models considered; however, more work is needed to understand the 
uncertainty pertaining to these individual estimates.  
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BACKGROUND 
There is substantial heterogeneity within a population in the way individuals respond to 

a specific treatment.7-11 However, typical clinical trial procedures focus on whether a treatment 

on average is effective and frequently actively discourage the examination of subgroup 

interactions.12-20 Patients would like to know what is going to work for them, but statistical 

procedures are focused on the average response. 

To address this problem, our application developed statistical methods to find patient, 

clinical, and contextual characteristics that define subgroups that are more or less likely to 

respond to a treatment. As noted by Alexander and Lambert,21 the potential promise of 

comparative effectiveness research (CER)— identifying the right treatment for the individual—

is at risk if the focus is on comparing differences in average treatment effects (TEs) between 

competing treatments when there is actually heterogeneity of TEs (HTE) across individuals. Our 

proposed research is responsive to the PCORI recommendation to support the development of 

analytic approaches and guidance for predictive approaches to HTE. With respect to PCORI 

methodology standards,22 the methods would be considered hypothesis generating, and we 

provide guidance on how to prespecify the analysis plan. 

Both behavioral prevention7 and medical8-11 research have frequently shown prominent 

subgroup differences in TE. However, subgroup analyses of clinical trial data are 

controversial,12-20,23 largely due to the high likelihood of type I error and lack of replicability23 

when an exhaustive list of interactions with treatment are tested. Machine learning techniques, 

such as random forests24 (RFs), provide a principled approach to explore a large number of 

predictors and identify replicable sets of predictive factors. In recent innovations, these 

machine learning techniques have been used specifically to uncover subgroups with differential 

treatment responses.1,11,25-30 Some of these, such as the virtual twin1 (VT) approach for the 

identification of subgroups, build on the idea of counterfactuals, that is, the outcome that 

would have been observed if an individual was assigned to the treatment opposite of the one 

to which they truly were assigned.31 The VT approach uses RF as a first step to create separate 

predictions of outcomes under both treatment and control conditions for each trial participant 
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by estimating the counterfactual treatment outcome. In the second step, tree-based predictors 

are used to uncover the features/variables that explain differences in the person-specific TE 

and the characteristics associated with subgroups. This promising procedure does tend to have 

relatively low sensitivity and positive predictive value. We evaluated an improvement on this 

approach by creating treatment-specific counterfactual machines. These procedures have been 

incorporated into a user-friendly, freely available R package for future use in CER.  

The data application clinical area that we planned to use to develop these CER methods 

to address HTE was sexually transmitted infection (STI) and HIV. Project AWARE,32 a large (N = 

5012) randomized comparative effectiveness trial, found that HIV risk reduction counseling for 

HIV-negative individuals at the time of an HIV test did not have an impact on the cumulative 

incidence of STI. However, the question remains as to whether there are subgroups that would 

benefit from counseling. The primary outcome of Project AWARE was STI incidence, a binary 

categorical outcome; however, secondary outcomes included continuous and count outcomes, 

such as the total number of condom-less sexual episodes and number of partners.  

Our survival model methods were applied to a secondary analysis of ischemic 

cardiomyopathy data that was previously reported.48 These data include the 1468 patients who 

were treated for ischemic cardiomyopathy (defined as severe left ventricular systolic 

dysfunction with ejection fraction of less than 30%) at the Cleveland Clinic between 1997 and 

2007. Data were obtained from a prospective registry approved by the University of Miami 

School of Medicine IRB with waiver of patient consent. Cohort patients were categorized into 

the following 4 different treatments: (1) coronary artery bypass graft (CABG, n = 386); (2) CABG 

plus mitral valve annuloplasty (MVA); (CABG+MVA, n = 212); (3) CABG plus surgical ventricular 

restoration (SVR) (CABG+SVR, n = 360); (4) and listing for cardiac transplantation (LCTx, n = 

510). The outcome modeled was all-cause mortality, including postsurgical death as well as 

death while awaiting transplantation. Patients were followed with consent, and this was 

supplemented with a search of the Social Security Death Index with a closing date of February 

16, 2007. This resulted in 5577 patient-years of follow-up, with 3.8 ± 2.8 years of follow-up on 

average. There were a total of 444 events (deaths) over the follow-up period with totals by 
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treatment of CABG (n = 186/386); CABG+SVR (n = 84/360); CABG+MVA (n = 80/212); and LCTx 

(n = 174/510).  

Not all patients are potential candidates for each of the surgical procedures or LCTx. The 

methods for comparing treatment outcomes at the individual level need to account for this. 

CABG is a surgical procedure that was developed in the late 1960s for patients with severe 

coronary artery disease. CABG+MVA is generally only done if severe mitral valve regurgitation is 

present. CABG+SVR addresses ventricular dysfunction, and although it has been shown to 

reduce ventricular volume relative to CABG alone, it was not shown to reduce rates of death or 

hospitalization.33 Finally, LCTx requires severe clinical symptoms and clinical doubt as to the 

appropriateness of the surgical interventions.  

This clinical example highlights the need for methods to assess HTE in a systematic 

fashion. The clinical reality of many diseases like ischemic cardiomyopathy is that there are 

multiple treatment choices, and clinical knowledge leads to decisions to try to match patients 

to appropriate treatment. Having statistical methods to quantify these decisions would be an 

important aid to decision-making and could allow better targeting of interventions in the 

future. 

This methodology will also innovate CER generally. PCORI has called for researchers to 

include “participants representative of the spectrum of the population of interest” and to 

“identify and assess participant subgroups” in their standards for research questions. However, 

as noted previously, the statistical and clinical trial community of scholars has repeatedly 

focused on the well-established pitfalls of subgroup analysis without sufficient concern for its 

benefits.12-20,23 Therefore, the concern about subgroup analyses and concerns of internal 

validity in efficacy/effectiveness research and resultant homogeneous samples have prevented 

the accumulation of trial-based knowledge about HTE. There are many clinical examples of 

heterogeneity of response derived from trial-based evidence, mostly from meta-analyses. 

However, meta-analyses even when examining heterogeneity may miss important subgroups.34 

The increasing emphasis on CER creates an opportunity to study HTE systematically at the 

patient level, if a replicable method of identifying patient subgroups with differential response 
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were available. The present application aimed to develop, test, and provide software to 

implement an innovative strategy for HTE. 

Original Aims 

Our original application had 3 aims. 

Aim 1: Develop comprehensive methodology, which will 

(1a) estimate patient TEs using person-specific counterfactual RF (CF) machines for 

heterogeneous and potentially confounded observational data; 

(1b) identify subgroups of patients with differential TEs using a novel unsupervised RF; 

(1c) compare differential TE identification against a novel bump hunting algorithm; and 

(1d) derive theoretical properties and run extensive empirical tests and synthetic 

simulations to assess the efficacy of the proposed methods. 

Aim 2: Develop software to implement these new methods in a wide array of CER 

applications by developing a user-friendly R package with API to add to the CRAN R package 

randomForestSRC (https://cran.r-project.org/web/packages/randomForestSRC/index.html) 

developed by our group, a package in its fifth release. 

Aim 3: Work with stakeholders (ie, public health department and infectious disease 

clinicians) and patient groups (ie, men who have sex with men [MSM] and other patients at the 

STI clinic) in all phases of research, in particular with interpretation of the clinical and personal 

value of the model as implemented on the Project AWARE data. Part of this aim was also to 

explore the feasibility of incorporating data collection and predictive modeling as part of clinic 

procedures. 

In the course of doing this research, it became apparent that some of these proposed 

aims needed to be altered. In the case of aims 1b and 1c, both unsupervised RF and bump 
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hunting are trying to find discrete subgroups with different characteristics and outcomes. Thus, 

they depend on empirical clustering in the data. We found, in Project AWARE, that our 

approach created individual treatment estimates that were quite smooth and normal in 

distribution, resulting in a continuum of heterogeneity with little evidence of clumping or 

clustering into categorical subgroups. Therefore, it was not necessary to develop methods to 

find clustering but rather to focus on issues affecting the individual treatment effects (ITEs). 

Second, it became clear that this research was at too early a stage for meaningful stakeholder 

engagement activities. Therefore, working with our PCORI project officer and contract 

managers, we modified aims 1 and 2 as follows. 

Modified Aims 

Aim 1 was to develop comprehensive methodology to 

(1a) estimate ITEs using person-specific CF machines for heterogeneous data; 

(1b) work across differing magnitudes of HTE; 

(1c) work when data are observational with potential confounding; and 

(1d) work with survival outcomes and with multiple treatment comparisons. 

Aim 2 was to develop software to implement these new methods in a wide array of CER 

applications by adding functionality to the existing CRAN-distributed randomForestSRC package 

developed by our group, a package in its fifth release at the beginning of this project. 
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PARTICIPATION OF PATIENTS AND OTHER STAKEHOLDERS 
Our original intent was to engage both patients and stakeholders, as is clear in our 

original aim 3. 

Throughout the study, we did meet with an advisory board of stakeholders that 

included representatives of the public health department, several infectious disease doctors, 

and a community researcher with close ties to the target population. They found the approach 

interesting and potentially promising, but it also became clear that implementation with 

patients within the 3 years of the contract was not realistic.  

Our original plan had been to conduct focus groups with patient groups to obtain 

preliminary data to plan a study where we would actually try to predict who might benefit from 

brief risk reduction counseling. Given that most of the heterogeneity in treatment was centered 

on a negative impact of treatment, we modified this contract and did not pursue the patient 

focus groups in the last year of the project. 
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METHODS 

Background on RF and Trees 

Our methodology falls within the realm of statistical learning theory; sometimes, the 

language in this domain is unfamiliar even to individuals with considerable statistical 

background. We therefore begin with some definitions of various terms and techniques to 

which we will refer later. Our proposal uses an ensemble learning method called random 

forest.24 Statistical learning techniques attempt to take simple inputs, such as observed 

characteristics, and build predictive models for some output or outputs that can be improved 

over time and with additional experience. In statistics, the inputs are frequently called 

predictors or independent variables, but in learning approaches, the term feature is used 

interchangeably with predictor. Similarly, in much of statistics, the outputs are called responses 

or dependent measures. The term learner is used to describe an elementary modeling 

technique, such as linear regression, which is used as the engine for learning or prediction. RF 

uses classification and regression tree (CART)4 learners. CART is a nonparametric method (ie, a 

method free of model assumptions) that uses recursive partitioning to choose a series of cut 

points for maximizing differentiation between groups defined by the predictors.35 This results in 

a series of nodes where the population can be divided and branches are as shown in the 

example in Figure 1. The process starts at the bottom of the tree (root node comprising the 

entire sample), with the root node split into 2, where the split point is determined by the value 

of the single predictor maximizing group differentiation. The groups in the resulting nodes are 

then split again by finding new nodes on which to split the subpopulations in those nodes. This 

process continues recursively until it is no longer possible to identify groups that differ on the 

outcome or the sample size at that node is too small, at which point a terminal node (top of the 

tree) has been reached. Figure 1 displays a hypothetical regression tree using estimated TE in 

risk reduction counseling as the outcome (see equation 1 for what we mean by an estimated 

TE). After comparing all potential splits on all variables, CART determines that having ≤1 or >1 

sexual partner was the split in the data that explained the largest (initial) variability in the TE. It 

found no additional splits below the ≤1 partner node. It did find an additional split for >1 

partner node at ≤3 on the perceived risk scale. The results show that patients in the right-most 
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terminal node, with >1 sex partner and with perceived risk for HIV >3, had improved STI 

incidence in the treatment group. The strength of CART is that it provides a general approach 

for predicting outcomes; predictions do not rely on model assumptions; nonlinear relationships 

are accommodated; and multiway interactions can be accommodated in the prediction. 

However, a well-known drawback of CART is its instability, that is, small changes in the data 

result in markedly different trees, which leads to high variability.36 RF is a state-of-the-art 

ensemble learning method designed to address the instability of CART.24,36 Ensemble learners 

can be loosely defined as predictors formed by aggregating base learners. In RF, CART is used 

for the learner; however, multiple trees are grown, each on different bootstrapped samples of 

the sample. In total, a collection of ntree >1 random trees are grown, which are aggregated to 

form the ensemble predicted value. Also, during the tree-growing process, at each node of the 

tree, a random subset of variables is chosen of size 1 ≤ mtry ≤ p, where p equals the total 

number of independent variables. The node is split using the variable from the mtry candidate 

variables yielding the best split. Splitting is repeated recursively as in CART, with the tree grown 

as far as possible, while maintaining the condition that each terminal node contain a minimum 

of nodesize ≥1 unique individuals in the sample. A small value of nodesize is typically used in 

order to induce deep trees with many nodes and branches (the original description of RF24 used 

splitting to purity in classification problems, ie, nodesize = 1). Once the forest is grown, each 

person’s set of independent variables can be used to find what terminal node they are in (or 

would have been in if they were not part of the bootstrapped sample for a particular tree). The 

average of responses in that terminal node is the predicted value for that tree for all individuals 

in that particular terminal node. The predicted value for an individual is calculated by averaging 

their individual tree predictions across all trees in the forest. 
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Figure 1. A Ssimple CART Ddiagram 

 
Abbreviations: CART, classification and regression tree; TX, treatment. 

The superior performance of RF to CART can be attributed to the randomization 

involved in growing its trees and the low biased nature of its learners. The 2-step randomization 

of growing a tree using bootstrapped data, and the use of random feature selection, has the 

effect of decorrelating the different trees in the forest, which yields a low variance predictor. 

Meanwhile, by using deeply grown trees, low bias is simultaneously achieved. Thus, RF achieves 

both low bias and low variance, unlike CART, which generally can only achieve 1 factor at the 

price of the other. In general, RF has proven to be an excellent predictor, performing especially 

well in challenging problems, including scenarios when the number of variables exceeds the 

sample size (the so-called “p bigger than n” problem), in settings where complex interactions 

are at play between variables, and when predictors are nonlinear. These properties have 

enabled RF to be successfully applied in many scientific problems.37-49 

Synthetic RFs 

We will also be using a new approach to RFs: synthetic RFs. RFs have tuning parameters, 

nodesize and mtry, the random number of features to be considered at each node, which can 

be chosen to maximize prediction or minimize a loss function, such as mean square error (MSE). 

This involves estimating many RFs with different values of the tuning parameters and choosing 
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the forest that minimizes or maximizes your objective. An alternative approach is to use each of 

the forests from the procedure to create a predicted value for the outcome of interest under 

each of the various nodesize and mtry specifications. These predicted values are called 

synthetic features because they are synthesized from the data. These synthetic features are 

then appended to the original features and a final forest estimated on the original features and 

the synthetic features, jointly. This approach is called synthetic RF.50 We will be examining both 

the original approach to RFs and the synthetic RF approach.  

RF Counterfactual Machines 

To describe our approach to aim 1a, we begin by introducing some notation. Let 

{(T1,X1,Y1),...,(Tn,Xn,Yn)} denote the data where Xi is the p-dimensional covariate (feature, 

independent variable) for patient i and Yi is the outcome. We assume that Yi is a binary 

outcome, Yi ∈ {0,1}, but our methodology applies to general outcomes; for example, it applies 

to multiclass (categorical) outcomes Yi ∈ {C1,...,CJ} and continuous outcomes. Variables Ti record 

the treatment for patient i. For simplicity, we assume for the moment that the treatment is 1 of 

2 values, Ti ∈ {0,1}. Each patient i is administered 1 of the 2 treatments. Thus, Ti = 0 or Ti = 1; 

however, we would like to know what the predicted probability for Yi is under both treatment 

regimens, even though we know very well that the patient can only experience 1 treatment. 

That is, we would like to predict pi,0 = P{Yi = 1∣Ti = 0,Xi,} and pi,1 = P{Yi = 1∣Ti = 1,Xi}. 

To do so, we create 2 RF machines under each treatment type and use 1 for 

counterfactual inference. An RF machine for treatment T = 0 is constructed by running RF 

classification using only the data for patients with treatment Ti = 0. We call this machine RF0. 

Likewise, an RF machine for treatment T = 1, denoted by RF1, is constructed by running RF 

classification using only data with Ti = 1. 

Now, given a patient, i, with Ti = 0, we obtain i’s predicted value, , using RF0. To 

obtain i’s counterfactual probability, we assume there is a clone of patient i that is identical to i 

in all ways except that the clone has received the alternate treatment. Thus, the clone has an 

identical Xi (p-dimensional covariate) but differs because Ti = 1. Then, to obtain the clone’s 

,0ˆip
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estimated outcome, we simply drop the clone down RF1 (ie, we apply the rules of RF1 to the 

clone’s features) and obtain the predicted probability, , which represents i’s counterfactual 

probability estimate. The value 

  (1) 

represents the estimated TE for patient i (when Ti = 1, a TE estimate is obtained in an 

analogous fashion using RF0 as the counterfactual machine). By performing this operation on 

each person in the sample, we can obtain a prediction of each individual’s expected TE. These 

machines could also be used to create predictions for new individuals to inform treatment 

decisions. 

Extension to More Than 2 Treatments 

The approach can be extended to the setting where there are more than 2 treatment 

options. Say, for example, there are M treatment types, denoted by T ∈ {1,...,M}. Calculate RF 

machines by stratifying on each treatment. This yields M machines RF1,...,RFM. For each i, 

calculate i’s predicted probability and its M − 1 counterfactual predicted probabilities from its 

M − 1 counterfactual machines. Denote the resulting predicted probabilities by

 be the overall treatment mean. Define the TE for treatment j 

as 

  

There are M distinct TEs. To each of these, we apply our algorithm. 

Cross-validated Estimates  

To further improve reliability and stability of inference, we exclusively use cross-

validated estimates obtained using “out-of-bag” (OOB) prediction. Recall that RF trees are 

calculated using bootstrap samples. On average, 36.7% of the data are excluded from any 

bootstrap sample because these people happen not to be included by the random choice of 

individuals. This OOB data can be used to calculate cross-validated estimates. For example, the 

,1ˆip

( )*
,0 ,1ˆ ˆi i iY p p= -

( ),
ˆ ˆ ˆ . 1j
i i j iY p p j M= - £ £
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OOB predicted value for patient i is calculated using only those trees for which i is OOB. 

Because this estimate does not involve i’s data, it represents a valid cross-validated estimate. As 

another example, when calculating the proximity between patients i and j, OOB proximity will 

be used, this being calculated by using only those trees for which i and j are both OOB. 

Confounding 

Each treatment may be to a degree bounded within constraints of indication and 

appropriateness. Certain treatments may simply not be suitable for certain patients. 

Counterfactual probabilities calculated without adjusting for such confounding will be biased. 

When calculating counterfactual probabilities, we first ascertain that the data used for the 

counterfactual machine are balanced for the patient; otherwise, that machine cannot be used 

for estimating a TE for that patient. One popular method to address this confounding in making 

comparisons of outcomes of alternative treatments is propensity score analysis.51 Rubin 

characterizes an observational cohort study as a broken randomized trial, and the propensity 

score is the key to finding the mechanism for treatment selection to approximate a randomized 

clinical trial.52 Propensity score analysis involves 2 steps. The first calculates the probability of 

receiving 1 or another treatment as a function of confounding variables. Assume a setting 

involving 2 treatment types, that is, T ∈ {0,1}. As a first step, one fits a propensity model by 

logistic regression of treatment T on the covariate X. The conditional probability of receiving 

the intervention given X is the propensity score, denoted here by P(X): 

P(X) = P{T = 1∣X}. (2) 

The propensity score has the balancing property such that T and X are conditionally 

independent given P(X). The second step in a classical propensity analysis is to match 

individuals on their propensity scores; individuals in each treatment group are included in the 

analysis only if there is a matching individual with the same propensity in the other treatment 

group. The balancing property shows that for patients with the same propensity score, their 

confounders have the same distributions, regardless of treatment group. Therefore, the 

confounders are balanced between the 2 comparative groups after matching, and the matching 

process approximates a randomized clinical trial.52 Note of course that propensity matching is 
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not required in our approach, as the patient’s clone is the matched patient (this is because the 

clone has an identical X and therefore an identical propensity score P(X)). However, we still 

need to ascertain that the data on which the counterfactual machine was trained include the 

values of the clone’s X. 

Propensity score analysis was developed for 2-group comparisons and does not apply to 

examples involving multiple groups. Recently, the methodology was extend to more general 

treatment regimens that include multiple treatment groups and a theoretical framework that 

extended the notion of a propensity score to that of a generalized propensity function, and its 

associated generalized propensity score (GPS) was described.53 Theoretical development of the 

GPS for multiple groups has shown that when the theoretical propensity score is modeled, say, 

as a multinomial probability model, the resulting (vector) propensities are balancing scores, and 

that TE estimates that depend on the propensity function are unbiased and not affected by 

confounding. However, there remains a gap between the GPS theory and practice, as the 

theory demands flexible, data-driven approaches that work with complex data while53 

historically relying on classical parametric models using maximum likelihood estimation. 

Instead, we propose using an RF machine for estimating the GPS. Indeed, the idea of using RF 

for propensity analysis has been successfully explored recently in the literature, although only 

for the 2-group propensity score analysis.54 Very promisingly, it was found that the propensity 

score from RF resulted in better balance and bias reduction than did logistic regression.54 The 

following theorem gives a unified definition of the GPS and forms the basis of our approach. 

Theorem 1: Suppose there exist functions g and P such that T = d g(P(X),ε), where ε is a random 

vector that is independent of X. Then, T and X are conditionally independent given P = P(X). Call 

P(X) the GPS. 

Theorem 1 says that if we can decompose the treatment T into 2 parts, 1 of which is 

completely explained by X and the other being completely random, then the first part must be 

the GPS. Importantly, this result is fully nonparametric and does not make any a priori 

assumptions about the relationship between T and X. For example, it does not assume a logistic 

relationship as is commonly adopted in propensity score analysis. The following corollary shows 
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how to find P(X). The result is merely a restatement of the well-known probability integral 

transform. 

Corollary 1: Let FT∣X(t) be the right-continuous cumulative distribution function of the conditional 

distribution of T given X. Then, T can be written as , where U is independent of X and 

U has a uniform distribution. That is, the GPS must be P(X) = FT∣X(t). 

For example, when T is a binary treatment, corollary 1 shows that the GPS is nothing 

more than the conditional probability of treatment given X (cf Lamont et al2). On the other 

hand, when T is a treatment with M treatment types, the GPS is a vector of M – 1 conditional 

multinomial probabilities. These values are directly calculated in an RF analysis and therefore 

allow us to immediately calculate the GPS. The multinomial probability RF analysis is based on 

the following steps: 

1. Fit an RF analysis using treatment T as the outcome and X as the covariates. Determine 
the GPS, P(Xi), for each patient i. 

2. To determine balancedness, the estimated should be examined to ensure that 

each element is bounded away from 0 and 1. 

Unsupervised RF for Subgroup Identification 

Unsupervised RF applies when there is no outcome response. The available data are X 

variables, which are either continuous or discrete (categorical), but there is no Y variable. We 

address this type of unsupervised learning problem using the following modified RF approach. 

In place of the standard mtry random feature selection, we instead randomly select mtry 

subsets of q-tuples of variables at each tree node where 1 ≤ q < p. For each q-tuple, 1 variable 

from the q-tuple is chosen at random to be the feature to be split on, and the remaining q − 1 

variables are treated as the responses (called the pseudo-outcomes). The best split (measured 

in terms of the mixed-outcome splitting rule) over the mtry q-tuples is used to split the node. 

When q = 2, the splitting rule used is either weighted MSE splitting when the pseudo-

outcome is continuous or Gini splitting when the pseudo-outcome is categorical. Weighted MSE 

( )ˆ
iP X
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and the Gini splitting rule are well-known CART splitting rules. Recently, we have shown they 

are members of the same class of splitting rules and therefore share similar theoretical 

properties.55 Thus, it is perfectly valid to compare the split statistic value from a regression 

pseudo-outcome split to the split statistic value from a categorical pseudo-outcome split. This 

only requires that the continuous pseudo-outcomes be rescaled by standardizing by their 

variance in the parent node, which is simple and computationally efficient to implement. 

When q > 2, the pseudo-outcome is multivariate with dimension q − 1 and is used when 

X is expected to be highly correlated, as splitting on multiple coordinates will improve subgroup 

identification. To split multivariate outcomes, we use a composite splitting rule, defined as the 

average of the splitting rule applied to each coordinate. For coordinates that are continuous, 

weighted MSE splitting is used, whereas Gini splitting is used for categorical variables. 

Outcomes that are continuous are standardized by their variance. Doing so ensures that the 

coordinate average split statistic values are valid due to the theoretical equivalence of Gini and 

weighted splitting.55 

The unsupervised forest returns a proximity matrix P of dimension n × n, where entry 

(i,j) reflects the closeness of patient i to j. To determine subgroups from this, we convert the 

proximity matrix to a distance matrix D = 1 − P and then apply clustering to D; for example, we 

will use hierarchical clustering with a target of K distinct clusters. The K distinct clusters 

represent our K distinct subgroups. A summary patient is created to characterize each 

subgroup. The summary patient is used to create a measure of distance for each patient as 

described in the split-merge algorithm. 

RF Algorithm for Subgroup TE Identification 

Below, we outline the RF algorithm used to identify subgroups of patients with TEs. 

Various details, such as the split-merge algorithm and variable selection, are presented in 

subsequent sections. 

1. Calculate RF machines RF0 and RF1. 

2. Calculate estimated TEs Y˜1,...,Y˜n using (1). 
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3. Run an RF regression (RF-R) using Y˜1,...,Y˜n for the outcomes and X1,...,Xn as the 
covariates. 

4. Apply the split-merge algorithm (see next section) to the predicted values from the RF-R 
of step 3. 

5. This yields groups g = 1,...,G with expected TE increasing in g. Within each group are K 
distinct subpopulations. Thus, groups with larger values of g will consist of 1 or several 
subpopulations of patients with sizable TEs that differ from the average TE. 

Split-Merge Algorithm 

A key step in the RF algorithm for subgroup identification is the split-merge RF algorithm 

that we now describe. Fundamentally, the split-merge algorithm relies on the notion of 

proximity, a key quantity calculated in an RF analysis. The forest proximity of an individual i is 

an n-dimensional vector pi = (pi,1,⋯,pi,n), whose jth entry, pi,j, equals the forest relative 

frequency of i and j sharing the same terminal node (here, n is the sample size). This value 

measures the closeness of patient i to j. The split-merge algorithm involves the following steps 

(the algorithm assumes an RF model has been fit already): 

1. Group patients into G > 1 groups corresponding to the percentile of their RF-predicted 
value of Y˜I, their estimated TE, obtained from an RF model (eg, group patients in 
increments of 5 percentiles of Y˜1). A large value of G is used to induce refined groups. A 
latter step automatically merges groups based on forest proximity; thus, a large value of 
G is not problematic and, in fact, is beneficial. 

2. For each group g, decide whether to leave each patient (called the target patient) within 
its group g or move the patient to an adjacent group (for the 2 end groups, there is only 
1 adjacent group, g + 1 or g − 1; for all others, there are 2 adjacent groups, g − 1 and g + 
1). To make this determination, calculate a representative patient for each of the 
adjacent groups and the initial group. The representative patient is the “summary” 
patient within the group, defined by forming a p-dimensional vector composed of a 
summary value of each of the p variables. For discrete variables, the summary is a 
majority vote, where the category with the most people in it is the summary value; 
otherwise, the summary is calculated by taking the average. The summary patient that 
is closest in forest proximity defines the group to which the target patient is moved (or if 
the selected summary patient is from the initial group, the target patient is not moved). 
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Patients are assessed for movement across the groups sequentially starting with the 
highest predicted value. 

3. To improve the potential for finding a good match within each adjacent group and 
within the initial group, identify K ≥ 1 distinct subgroups using unsupervised RF. In total, 
there are K distinct summary patients within an adjacent group and K distinct summary 
patients within the initial group who are used to determine proximity to the target 
patient. These subgroups are subject to a minimum membership restriction of typically 
5 or 10 patients. 

4. Apply steps 2 and 3 in turn to each group g = 1,...,G, each time updating group 
membership after completing a step g. 

5. At completion, the algorithm returns a new grouping of patients. Using this as an initial 
starting value, the algorithm is repeated. This process can be repeated several times; 
however, in our experience, the algorithm converges rapidly (2 to 3 iterations, but 1 
iteration is also sufficient). 

Applying steps 1 to 5 yields a classification of each patient into 1 of G groups. To remove 

instability in ranking, the entire split-merge algorithm is bootstrapped. More precisely, a 

bootstrap sample of the data is drawn, and steps 1 to 5 are applied to these data. This is 

repeated B times independently. For each patient, this results in a set of B values {Gˆi,1,...,Gˆi,B}, 

where Gˆi,b ∈ {1,...,G} is the group assignment for patient i for bootstrap b. The average G

 (rounded) represents the final group assignment for i. The set of values {G1,...,G 

n} is used to classify the data into G groups. Within each group g, we apply unsupervised RF to 

obtain K subgroups. The K subgroups within g represent K subpopulations that have similar 

outcome behavior but with different patient characteristics. 

Bump Hunting for Subgroup Identification 

We had originally planned to explore an alternate strategy for identifying important 

subgroups with potentially different TEs. The patient rule induction method (PRIM) algorithm 

for bump hunting was first developed by Friedman and Fisher.56 It is an intuitively useful 

computational approach for the detection of local maxima (ie, bumps) on target functions 

(Figure 2). Its objective is to find subregions in the input space with relatively high values for the 

response variable. By construction, PRIM targets these subregions directly rather than indirectly 
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through estimation of a regression function through a series of peeling and pasting steps acting 

along the directions of the predictor variable coordinate axes. The method is such that these 

subregions can be described by simple rules, such as the union of rectangles in the input space. 

The PRIM algorithm can, however, perform poorly with correlated predictors and when the 

number of predictors becomes large. Dazard and Rao57 noticed that PRIM could be significantly 

improved by incorporating the joint structure in the covariate space via a principal component 

analysis (PCA) transformation (ie, PRIM-PCA). More specifically, they proposed a local sparse 

bump hunting (LSBH) strategy that divides the predictor space into subregions where at most 1 

node is present, then a sparse PCA transformation (SPCA) is performed separately on each local 

region with a node, and, finally, the location of the bump is determined via PRIM in the local, 

rotated, and projected region induced by the SPCA. This strategy was used effectively to 

identify heterogeneous subgroups with respect to survival in patients with colon cancer.57,58 

The LSBH algorithm is, however, computationally expensive, so Diaz et al59 proposed modified 

versions of both PRIM and PRIM-PCA called fastPRIM that takes advantage of situations where 

symmetric predictor distributions exist by using a very efficient peeling and pasting algorithm 

that can greatly reduce the number of steps required. The fastPRIM algorithm with PCA 

rotation was also shown to possess certain optimality properties, including the fact that it 

produces boxes with minimum volume, thus providing a more accurate characterization (with 

respect to the predictor space) of the rectangular box approximating the bump. We will use the 

LSBH and fastPRIM algorithms as an alternate strategy for identifying important subgroups. To 

visualize the difference between these approaches, consider Figure 2, which is an illustration of 

simulated data where a bump is hiding in 2-dimensional predictor space. It is visually very clear 

what the differences in the approaches are algorithmically and how different the resulting 

bumps can look. The first row of plots depicts PRIM operating on the nonrotated (left) and PCA-

rotated (right) predictor spaces. The second row of plots is the same but this time for fastPRIM. 

Notice how the PCA rotation produces a more focused search along the direction of 1 of the 2 

predictors, that with higher variance. Notice also that the symmetric peeling and pasting of 

fastPRIM are clearly evident, resulting in distinctly different final subregions (the darkest-red 
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rectangles) and that fastPRIM in the PCA space produces the most “concentrated” dark-red 

rectangle. 

Figure 2. PRIM and fastPRIM Ssequences of Bboxes as a Ffunction of Ccoveragea 

 
Abbreviations: PC, principal component; PRIM, patient rule induction method. 
aTop row: PRIM complete sequence of peeled boxes. Bottom row: fastPRIM complete series of boxes. Results are 
given in the input space (left) and in the PC space (right). The red-to-blue palette corresponds to a range of box 
output means from the largest to the smallest, respectively. 
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Methods for Individual Simulation Projects  

Methods of Studies Associated With Aims 1a Through 1d 

For aims 1a through 1c, we devised a series of simulation studies. In these studies, we 

generated data in which we knew the true TE for each individual for each treatment to which 

they could be assigned. We then tested our procedure(s) with 250 to 1000 different generated 

data sets to understand how the procedure would normally work. We had 3 major simulation 

studies in this project and 1 empirical example. The first 2 simulations focused on showing that 

our proposed methods would work on clinical trial data. An earlier project related to these 2 

sets of simulations was initiated before this PCORI project. We also describe the results of this 

earlier project because it frames how we thought about these 2 simulations. Study 1 of the 

PCORI simulations attempted highly nonlinear data generation models and compared how 

different approaches to estimation worked when treatment was randomly assigned. Study 2 

examined how ITE estimates performed as the amount of heterogeneity and the sample size on 

which the RF counterfactual machines were estimated varied, again when treatment was 

randomly assigned. Study 3 examined how ITE estimates were affected when confounded 

observational data were used to estimate each of the machines. Finally, study 4 illustrated how 

to estimate ITEs on survival outcomes and when there were multiple treatments available, 

some of which might not be available to an individual. This final study also examined how to 

incorporate expert knowledge into rankings of treatment outcomes.  

Our initial work showing that RF can estimate individual treatment 

outcomes. We have completed extensive work in this area, including 1 paper that has been 

published2 (note that because most of the work on this manuscript was completed before the 

PCORI project was funded, this has not been counted as one of the products of this contract) 

and 1 paper that is close to completion. The published manuscript compared 2 methods of 

generating predictions of how individuals would react to treatments, RF, and multiple 

imputation (MI). The MI approach assumes that the relationship between individual 

characteristics and individual outcomes from treatment follows a multivariate normal 

distribution. As noted in the overview, RF makes very few assumptions. It is known as a 
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nonparametric method and does not assume anything about the statistical distribution of 

individual characteristics, the treatment outcome, or the functional form that links an 

individual’s characteristics to their likely treatment outcome. 

MI procedure to generate ITEs. In general, our approach to generating person-

specific TEs uses what is called a potential outcomes framework. In this framework, each 

individual has a potential response under every treatment condition. Of course, there is only 1 

actual response (ie, the response under the treatment the individual actually receives; 

responses under other treatment conditions are not observed). Although we observe people in 

both treatments, we do not observe the same person in both treatments. Conceptualized in 

this way, the unobserved values associated with the unobserved treatment conditions could be 

considered a missing data problem and handled with modern missing data techniques. In a 

randomized clinical trial, the missing data are completely due to randomization and are 

therefore known to be missing completely at random.  

MI is a flexible method for handling missing data that should work well in a randomized 

trial situation to impute treatment outcomes of missing treatments. We use MI with the 

outcome set to missing for the treatment(s) that the individual was not assigned and impute m 

> 1 plausible values based on a large set of observed baseline covariates. The ITE is defined as 

the average difference between the values of outcome for treatment A and the values of 

outcome for treatment B across imputations, for which data are now available for every 

individual. The fact that more than 1 imputation is used preserves the underlying uncertainty in 

the data. The method we used for MI is known as the chained-equations algorithm. 

The simulation in the Lamont et al manuscript. In Lamont et al,2 we created a 

rather simple data generation model comparing an active treatment with a control treatment. 

The outcome in the control treatment was purely random, with the variability of the outcome 

equaling 1. We then generated 7 binary variables; half of the individuals would be zero and half 

would be 1 on each of these variables. We then generated their true TE under the active 

treatment using the following formula: 
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Each individual’s observed outcome under the active treatment was the true TE plus a 

random term with variance equal to 1. The results of the simulation show that both methods 

worked to estimate the true TE; however, there appeared to be more variability in the RF-based 

estimates (see Figure 3). In addition, there is a tendency at the tails of the true TE for the RF 

predictions to be biased toward zero0. This bias can be seen clearly in Figure 4. 

Figure 3. Relationship Bbetween Ttrue TE and Ppredicted TEa 

 
aThe left-hand plot shows the multiple imputationMI approach, and the right-hand plot shows the random 
forestRF approach. 
  

1 2 3 4 5 6 71.3 1.2 .6 .3 .5 1.1 1.2TE X X X X X X X= - - - + + + +
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Figure 4. Bias in the 2 Mmethods (MI and RF)a  

 
Abbreviations: MI, multiple imputation; RF, random forest. 
aThe left-hand plot shows the MI approach, and the right-hand plot shows the RF approach. 

Summary. This simulation showed that both methods, the MI approach and the RF 

approach, can be used to estimate ITEs using clinical trial data. The predictions were less 

variable and less biased using MI. It should be noted that the RF is unbiased across the sample 

but appears to be more biased toward zero in the tails of the true TE. This is consistent with the 

known edge bias in nearest neighbor (and, in particular, RF) estimators.6 In this simulation, it 

appears that MI is superior to RF as an estimator of ITEs. However, it should be kept in mind 

that the model used to generate the data met all the assumptions for MI to work well, which 

may not be true for real clinical data. In addition, MI, while a useful method when there are 

very few predictors, will not do well when there are numerous predictors, such as in the case 

when genetic data are included in the prediction. Our study 1 expands the data-generating 

models to be more complex and looks at additional methods for generating ITEs. We believe 

under different circumstances that different methods will be best to use to estimate ITEs. 
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Methods for Study 1: How Well Does RF Work to Predict How Individuals 
Will Do in Treatment With More Complicated Forms of Heterogeneity? 

Study 1 expands the data generation models used to test our approaches to ITE 

estimation. This study examines 3 methods of estimating ITEs: MI, RFs, and Bayesian additive 

regression trees (BART).3 Like RFs, BART is tree based and has tuning parameters. It is a 

Bayesian procedure because users provide a guess as to the correct tuning values, but the 

algorithm combines this guess with what the data show to be the correct tuning value. The data 

generation algorithms are as follows: 

D1: only random error and heterogeneity  

$(&) 	= 	−0.65	 ∗ 	&1	 − 	0.6	 ∗ 	&2	 − 	0.3	 ∗ 	&3	 + 	0.15	 ∗ 	&4	 + 	0.25	 ∗ 	&5	 +

	0.55	 ∗ 	&6	 + 	0.6	 ∗ 	&7	 + 	0	 ∗ 	&8  

D2: heterogeneity with square and 2-way interactions  

$(&) 	= 	−0.47	 ∗ 	&21	 − 	0.6	 ∗ 	&2	 − 	0.31	 ∗ 	&3	 ∗ 	&9	 + 	0.15	 ∗ 	&4	 + 	0.25	 ∗

	&5	 ∗ 	&8	 + 	0.55	 ∗ 	&6	 − 	0.43	 ∗ 	&27  

D3: heterogeneity with cubic and 3-way interactions  

$(&) 	= 	−0.17	 ∗ 	&31	 − 	0.6	 ∗ 	&2	 − 	0.30	 ∗ 	&3	 ∗ 	&9	 ∗ 	&10	 + 	0.15	 ∗ 	&4	 +

	0.25	 ∗ 	&5	 ∗ 	&11	 ∗ 	&12	 + 	0.55	 ∗ 	&6	 + 	0.16	 ∗ 	&37  

D4: heterogeneity with square and nonlinear interactions  

$(&) 	= 	−	0.873	 ∗ 	&1	 ∗ 	&81	 − 	0.891	 ∗ 	&2	 ∗ 	&82	 + 	0.30	 ∗ 	&3	 + 	0.15	 ∗ 	&4	 +

	0.25	 ∗ 	&5	 + 	0.55	 ∗ 	&6	 + 	0.772	 ∗ 	&7	 ∗ 	&8	 ∗ 	&81  

D5: heterogeneity with cubic and nonlinear interactions  

$(&) 	= 	−	0.873	 ∗ 	&1	 ∗ 	&81	 − 	0.891	 ∗ 	&2	 ∗ 	&82	 − 	0.305	 ∗ 	&3	 ∗ 	&9	 +

	0.153	 ∗ 	&4	 ∗ 	&10	 ∗ 	&11	 + 	0.253	 ∗ 	&5	 ∗ 	&12	 + 	0.564	 ∗ 	&6	 ∗ 	&15	 ∗ 	&16	 +

	0.772	 ∗ 	&7	 ∗ 	&8	 ∗ 	&81  
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where &!, . . . , &!" were drawn from a multivariate normal standard :(0, 1) and 

covariates &#! and &#$ were generated as indicator variables for an observed variable (ie, a 

variable in the feature set) being inside or outside, respectively, of the 33% and 66% percentile 

cutoffs. 

The simulated data sets included 5000 participants, and there were 1000 data sets 

simulated. We compared the distributions of bias and root MSE (RMSE) of the estimates across 

the 1000 simulated data sets. 

Methods for Study 2: What is the Impact of the Magnitude of 
Heterogeneity on the Performance of These Estimators? 

The purpose of study 2 was to explore how these ITE estimates performed as the level 

of heterogeneity and the sample size changed. In addition, we examined the impact of 

prognostic covariates that are predictive of outcome across all treatment variables. As part of 

this study, we explore the use of various effect size measures for HTE.  

Our general model includes 2 types of predictors of outcomes. If we have prognostic 

covariates, Z, which affect Y in the same manner regardless of treatment, and predictive 

covariates, X, which differentially affect Y depending on treatment assignment, then the 

potential outcomes for each individual can be represented as: 

 

. 

Note that either X or Z (but not both) may include a constant term. Given that this is a 

randomized study, it seems reasonable to assume that  and  are drawn from the same 

distribution, in which case:  

 

( )0 0| , , 0i i i i i iY E Y X Z T e= = +

( )1 1| , , 1i i i i i iY E Y X Z T e= = +

0ie 1ie

( )0 | , , 0 e= = +i i i i i iY E Y X Z T
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. 

If we further assume that X, Z, and T are independent of each other, , and 

assume linearity of the conditional expectations, then: 

, 

and we could describe Y as conditional on T as: 

 

 

Then, the ITE is: 

. 

Given our framework, we can describe the variability in Y according to whether it is 

associated with X, Z, or residual error. 

Definition of effect size. Standard definitions of effect size tend to focus on mean 

differences across treatments with a standardization using some measure of variance, normally 

the standard deviation. These effect size measures can be transformed into a proportion of 

variance explained by examining how much of the variability in outcome is explained by the 

mean differences. Because HTE implies variability in outcomes, an effect size measure for HTE 

logically would focus on ratios of variances. One measure of effect size might be the simple R2 

for the amount of variance that is explained by observed characteristics: 
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. 

However, this confounds the heterogeneity and prognostic predictors. Another possible 

measure is the simple proportion of the variance associated with heterogeneity:  

.  

Of course, in simple multiple regression analysis, prognostic control variables actually 

increase statistical power and therefore are removed from the denominator: 

 ..  

Finally, we could also look at the ratio of the variance of heterogeneity to the residual 

variance: 

. 

Simulation design. The purpose of this simulation is to understand how the 

magnitude of heterogeneity affects the properties of the predicted ITEs (PITEs). Simulation 

models with different types of HTE were used to assess the performance of the different 

estimation methods. Each specification of the simulation was repeated with 1000 data sets 

generated for each specification. Baseline covariates and the true TE were set to be the same 

across the 1000 repetitions; however, random error was varied. This established a scenario 

where the same individual was repeated, allowing for intuitive interpretations about the 

number of times an individual's predicted value reflected the true TE. There were several 

repetitions of the simulation with different sample sizes and variance settings. Data were 

generated in R software, version 3.3.3 (R Foundation for Statistical Computing). 
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The primary assumption here is that the independent variables are uncorrelated and 

independently drawn for both continuous and binary types of variables, as follows: 

. 

Note that the variance of continuous measures was chosen to equalize variability across 

the continuous and dichotomous/binary predictor variables. Distribution of the features is a 

design factor in the simulations; simulations are done wherein all Z and X are either continuous 

variables or all binary variables. We decided to compare continuous and binary predictors to 

compare the impact of edge bias with the 2 types of predictors. We hypothesized that evidence 

of edge bias would be strongest with continuous predictors because the edges would be less 

dense, providing fewer neighbors. 

We have a number ofmany additional design factors for the simulations, which are all 

crossed with the type of predictor. That is, the following conditions are repeated twice, once 

with binary predictors and once with continuous predictors. Due to the choice of variances 

described previously, the measures of effect sizes within a specification will be identical for 

continuous and binomial feature sets. 

(1) Four levels of HTE: 

 

(2) Two levels of prognostic predictors (ie, predict Y regardless of treatment):  

( )
( )

( )
( )

1 2 3 8

1 2 3 6
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21 22 23 27
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None Y Y
Low Y Y X T X T X T X T X T X T

Medium Y Y X T X T X T X T X T X T
High Y Y X T X T X T X T X T X T
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(3) Three levels of random error: 

  

(4) Three levels of nuisance (nonpredictive) covariates: k = 8, k = 16, and k = 32 

(5) Three sample sizes: n = 500, n = 2500, and n = 5000 

(6) Four different types of estimators: VT, RF, synthetic RF, and generalized linear model 

(GLM) 

Methods of estimation. The VT method was proposed by Foster et al1 to estimate 

outcomes under the potential outcomes framework. In this method, a single RF is trained to 

regress the outcome ;% 	against covariates <% 	and treatment condition	=%. The counterfactual 

outcome estimate for individual > is then obtained by setting up the VT data, that is, the original 

observed treatment variable T&	and its counterfactual treatment	1 −	=%. These 2 counterfactual 

conditions are used to obtain the 2 outcome estimates ;@%(1)	ABC	;@%(0). Finally, the ITE 

estimate for individual i is defined as	;D%(1) 	−	;@%(0). Similarly, for the entire data set, ;@'((E, =) 

indicates the predicted value for data set (E, =) from the VT forest; the ITE estimate is then 

defined as  

F̂'((E) 	= 	;@'((E, 1) 	−	;@'((E, 0). 

Foster et al1 mention certain tuning parameters, such as including treatment 

interactions in the design matrix. This is done by training an RF-R, where ;%  is regressed against 

covariates &%, treatment condition =%, and their pairwise interactions with treatment, H%=%.  

Our CF approach is similar to VT, but rather than estimating a single RF across both 

treatments, a separate RF is estimated for each treatment including only the cases assigned the 
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particular treatment. This procedure can be done in 2 different ways. In the first, the standard 

RF approach is used; in the second approach, synthetic RFs are used. 

Our final estimator simply uses a GLM to fit an outcome model for each treatment 

where only people in the treatment are included in the GLM. These models are then used to 

generate predicted values for outcome under each treatment for each individual, and the 

individual treatment prediction is formed as the difference in these 2 estimates. 

Methods for Study 3: Can We Estimate Individual Outcomes (and Therefore 
Create Predicted ITEs) Using Observational, Potentially Confounded Data? 

We have extended these approaches to work with observational, potentially 

confounded data.5 Because our work here is based on observational data, different individuals 

have a different likelihood of getting different treatments. This implies that differences in the 

characteristics of individuals are related to their likelihood of getting a particular treatment, 

which causes most simple procedures used to estimate TE to be biased due to this confounding. 

One method to address confounding is to estimate the likelihood of getting each treatment and 

to create a propensity score, which is the probability of a particular individual getting a 

particular treatment. One method to estimate average TEs reweights the estimates by the 

inverse of the propensity score, which equalizes the distribution of the predictive 

characteristics across treatments.  

In this study, numerous different RF approaches were examined for creation of the ITEs. 

These approaches did not correct the weighting of individuals but did include all the potentially 

confounding variables in the set of features used to predict each individual’s outcome under 

different treatments. For each sample, a propensity score was also estimated and was used to 

assess bias and variability. For each procedure, bias and variability (RMSE) were examined, 

stratified by the propensity score. Therefore, the ITE estimates did not incorporate the 

propensity score; however, the assessment of bias did stratify on the propensity score to 

examine if the procedure performed well across the entire distribution of the propensity.  
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We examined 7 different methods for generating the PITEs. The first method is VT.1 In 

this approach, RFs are used to predict outcome based on individual characteristics and a 

treatment indicator. In a 2-treatment clinical trial, 1 forest created would be created; the 

treatment indicator would be set to 0 to obtain the prediction for 1 treatment and then set to 1 

to obtain the prediction for the other treatment. The second method is a variant of VT, VT 

interaction (VT-I). In VT-I, rather than just putting the individual characteristics into the 

procedure, the individual’s characteristics are put in with an interaction. In essence, the vector 

(list) of characteristics, X, is put in twice. It is multiplied one 1 time by T (the treatment indicator 

which equals 0 or 1), and the other time by (1 – T). The third method is CF. In this approach, 

separate RFs are estimated for each of the treatments, including only those people who 

received the individual treatment. The same predictors, X and outcome, Y, are used as in VT. 

The fourth method is a counterfactual synthetic RF (synCF). This method is like the CF approach 

but uses synCF.50 In this method, multiple RFs are estimated using various levels of the tuning 

parameters (the number of characteristics considered at each branch of the tree and the 

minimum number of people in the highest or terminal node in the trees). For each of these 

forests, the outcome is predicted. The final prediction of outcome is a forest that includes all 

the original characteristics and these new, predicted outcomes (synthetic characteristics). The 

fifth method is a bivariate imputation approach (bivariate). This approach uses a multivariate 

unsupervised RF procedure to impute the outcome for the treatment the individual did not 

receive as a missing data problem.4 The sixth method is causal RF (causalRF).6 The causalRF 

approach builds a forest on half of the data, holding out half for a second stage of the 

procedure. CausalRF also uses a different rule for choosing cut points. It chooses the cut point 

that maximizes the treatment difference within a node (a branch of the tree). Once the forest is 

completed, the predictions are based on the held-out data, using the forest grown on the 

training data. The final method we compared is BART.3 In BART, the multiple trees are averaged 

as in RF, but there is a Bayesian prior set on tuning parameters. The procedure has been 

described as modeling the regression surface to estimate the potential outcomes (see Hill3) and 

therefore is similar to the VT approach, with BART replacing RF. 
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We also tested these methods for generating person-specific TE estimates using 3 

different data generation models. Twenty covariates were created; the first 11 were normally 

distributed, with a mean of 0 and variance of 1, and the next 9 were Bernoulli (0-1), with a 

probability of 0.5 of being a 1 (and 0.5 of being a 0). To simulate the observational nature of the 

data, we created a logistic model (the equation is in the logit scale) for the probability of 

treatment equaling 1 (relative to 0): 

 . 

The 3 data generation models were 

  

where 1{} is an indicator function which is 1 if the condition in the brackets is true and 0 

otherwise. Further, the 2 functions are 

. 

Note that all 3 data generation models are confounded because characteristics that are 

related to the probability of treatment are related to treatment outcomes, and there is 

heterogeneity because there are interactions with treatment. Finally, each of these methods 

and data generation models was examined for estimating the ITEs.  

Methods for Study 4: Can These Methods Be Expanded to Survival 
Outcomes and to Compare Multiple Treatments?  

An article currently under review60 focuses on ischemic cardiomyopathy and uses 

observational data to make causal treatment comparisons among 4 distinct treatments: (1) 

CABG, (2) CABG+SVR, (3) CABG+MVA, and (4) LCTx. This approach proposes a method to ensure 
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that there is full overlap (eg, that treatment comparisons are only made for treatments for 

which an individual is eligible) and allows expert knowledge to be included in the procedure. 

There are important differences regarding the ITE estimates from our other work. In what we 

have described so far, TEs are simple differences in outcomes between 2 treatments. When the 

outcome is survival, there are different survival curves (or functions) across each treatment. 

This means that rankings of treatments may reverse over time. For example, treatment A may 

improve the chance of survival relative to treatment B in the first year after treatment, but in 

later years, the chance of survival may be greater under treatment B than under treatment A. 

The assumptions necessary for this approach to estimating ITEs with survival outcomes are 

described in the next section. 

Treatment effect in survival. The formal notational setup for our extension of 

individual treatment effective analysis to survival data is as follows. Let {(X1, Z1, T1, δ1), . . ., (Xn, 

Zn, Tn, δn)} denote the data, where Xi denotes the covariate vector for individual i, (Ti, δi) is the 

observed survival outcome, and Zi denotes i’s assigned treatment group, where Zi is coded as an 

integer value from 1, . . ., M, where M > 1 is the total number of available treatments. The 

individual’s survival outcome is composed of the observed survival time Ti = min(To, Co) and the 

censoring variable δi = 1{To ≤ Co}, where To is the true (potentially unobserved) event time, 

assumed to be independent of the true (potentially unobserved) censoring time, Co. We say i is 

right-censored at time Ti if δi = 0; otherwise, the individual is said to have experienced an event 

at Ti. Following Rosenbaum and Rubin,51 we provide a definition for strongly ignorable 

treatment assignment within the survival setting: 

DEFINITION 2.1. Let To(j) and To(k) denote the potential outcomes (event times) 

under treatments Z = j and Z = k, respectively. We say that strongly ignorable treatment 

assignment (SITA) holds, if for all j  k ∈ {1, . . ., M }, 

Z ⊥ {To(j), To(k)} | X. 

In other words, if SITA holds, P{To(j) ∈ · |Z, X} = P{To(j) ∈ · |X} for j = 1, . . ., M. 

¹
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Another key assumption in our development is complete overlap. Let ej(x) = P(Z = j|x), 

the propensity score (for treatment assignment). Complete overlap is said to hold for x if 0 

< ej(x) < 1 for j = 1, . . ., M . With these 2 definitions in hand, we are now ready to define various 

useful quantities for assessing treatment effectiveness. We begin by providing a definition for 

ITE in survival settings. Note that our definition of ITE is a function of both x and t. 

DEFINITION 2.2. The ITE at time t for covariate x for treatment j over treatment k 

is defined as follows: 

τj,k(t, x) = ψ{S(t(j)|x), S(t(k)|x)}, 

where ψ(.,. )) is a known function and S{t(j) x} = P{To(j) > t|X = x} is the survival function 

for the potential outcome To(j) conditioned on X = x. 

The assumption of SITA ensures that τj,k(t, x) is estimable from the observed data. Under 

SITA, we have 

S (t(j)|x) = P{To(j) > t|X = x} 

= P{To(j) > t|X = x, Z = j} 

= P{To > t|X = x, Z = j} 

= S( (t|x, Z = j) 

where S(t | x, Z = j) is the survival function for To conditioned on X = x and Z = j. Thus, 

under SITA, the survival function equals S(t(j) | x), which ensures that the potential outcome 

survival function is estimable. In general, these 2 values may not be equal without this 

assumption. 

Under SITA, we can now write the ITE as follows: 

(2.1) τj,k(t, x) = ψ{S(t|x, Z = j), S(t|x, Z = k)}. 



 

39 

Given an estimator Sˆ(t x, Z) for the survival function, it is clear we can estimate the ITE 

by calculating ψ using the estimated survival function. Examples of ψ(.,.) that can be used to 

define the ITE include 

(2.2) , 

where ψ(a, b) = a - b, so that τj,k(t, x) is the difference of 2 survival curves. Another way 

to measure ITE is through survival curve domination, 

, 

which corresponds to ψ(a, b) = 1{a > b}.6 

Assessing overlap in treatment assignment. To assess overlap in treatment 

assignment, we used and compared 3 approaches for determining treatment eligibility. In this 

section, we report the comparability of the resulting groups in terms of the balance of 

covariates and overlap (when using propensity scores). All 3 of these methods use expert 

knowledge (Eij is an eligibility indicator for person i for treatment k) but to differing degrees. 

Note that in ischemic cardiomyopathy, expert knowledge cannot be considered a gold 

standard, so although it is a guideline, there is room for improvement on it. The first 2 methods 

use Eij to calibrate a cut point for exclusion. The third method actually uses a direct prediction 

of expert knowledge. In the first method (RF-C), an estimated probability of receiving each of 

the treatments is estimated as a function of baseline features using RFs for classification. In the 

second method (RF-D), a new distance-based RF procedure is used, wherein the estimated 

probability of RF-C is used as the outcome, and individual characteristics are used as predictors. 

Once the RF has been estimated, the distance of each person from every other person is 

estimated, where distance is based on the proportion of the branches of the tree that the 2 

individuals traversed in common. These distances are of course indexed by individuals (i and j), 

but also by treatment received, k. The likelihood of being assigned to treatment k for individual 

i is the sum of (1-distance) from person i to all persons who receive treatment k divided by the 

sum of (1-distance) of person i from all individuals in the sample. For both of the first 2 
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methods, a cutoff score for inclusion in the sample or group to be predicted is calculated by 

choosing the cutoff score that minimizes the misclassification error using expert knowledge 

(clinical guidelines from the American College of Cardiology/American Heart Association) as the 

target (ie, the cutoff is chosen to minimize the occasions in which the decision to include 

someone disagrees with expert opinion). The final approach uses multivariate RFs (MRFs) 

according to expert knowledge. Each MRF is calibrated, and a cut point for inclusion in sets of 

eligibility is found by minimizing the misclassification error (of what the individual actually 

received).  
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RESULTS 

Study 1 

Recall that study 1 extended the findings of Lamont et al2 by examining multiple more-

complex data generation models with higher-order interactions and nonlinear interactions. 

These simulations showed that in at least 1 simulation (D3), MI did not do as well as RFs in 

terms of bias. Further, there is less spread in the distribution of bias in RF and less still in BART 

across the data generation models (Figure 5).  

Figure 5. Bias Comparison Across All Simulations With MI, RF, and BART Aapproaches 
(Distribution of Bias Across Replications in the Ssimulations) 

 
Abbreviations: BART, Bayesian additive regression trees; MI, multiple imputation; RF, random forest. 
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As shown in Figure 6, the ranking of the distributions of RMSE across simulations seems 

to hold across data generation models. MI has at least a slightly higher mean RMSE and a wider 

spread of RMSE across the data generation models than does RF. BART appears to have the 

lowest spread of RMSE across the data generation models.  

Figure 6. RMSE Comparisons Across Simulations 

 
Abbreviations: BART, Bayesian additive regression trees; MI, multiple imputation; RF, random forest; RMSE, root 
mean square error. 

 

Study 2 

Recall that study 2 was a simulation study that varied the amount or size of the HTE, the 

amount of variability in other prognostic covariates (which predict outcomes across treatment), 

sample size, and the amount of residual variability. It compared the RF, synthetic RF, and GLM 

and also varied the distribution of the predictors, either binary or continuous. Figure 7 shows 
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the distribution of bias across individuals for different levels of heterogeneity and levels of 

prognostic covariates.  

Figure 7. Bias Across Levels of Heterogeneity With and Without Prognostic Covariatesa 

 
Abbreviations: GLM, generalized linear model; HTE, heterogeneity of treatment effects; Med, medium; w.Prog, 
with prognostic covariates; RF, random forest; Syn, synthetic RF; VT, virtual twin. 
aThe left panels show the distribution of bias across replications in the simulation at various levels of heterogeneity 
with no prognostic covariates. The right panels show results at various levels of heterogeneity but with each 
including the prognostic covariates. Note that the x-axis scale varies by row. 

 

Within each panel, note that the synthetic RF approach has the least amount of bias. 

Comparing across rows, note that the range of bias increases as heterogeneity increases (ie, the 

x-axis scale changes across rows). The other striking difference among the panels is that 

whereas mean bias across the sample stays centered at zero, the spread of bias within the 

sample increases substantially for the RF estimators when there are prognostic covariates 

included in the data generation model. Finally, it would appear that GLM estimates have the 
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largest spread of bias, perhaps due to the lack of model selection (as would occur in boosting, 

for example).  

Figure 8 presents the RMSE for each of the simulations included in Figure 7.  

Figure 8. RMSE Across Levels of Heterogeneity With and Without Prognostic Covariatesa 

 
Abbreviations: GLM, generalized linear model; HTE, heterogeneity of treatment effects; Med, medium; w.Prog, 
with prognostic covariates; RF, random forest; RMSE, root mean square error; Syn, synthetic RF; VT, virtual twin. 
aThe left panels show results at various levels of heterogeneity with no prognostic covariates. The right panels 
show results at various levels of heterogeneity but with each including the prognostic covariates. Note that the 
scale of the x-axis varies for the no-HTE row. 
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From examination within a panel, it is clear that the synthetic RF estimates dominate 

and have a smaller RMSE than that of the other estimators. There is an increase in the spread of 

the distribution of the RMSE as both the level of heterogeneity and the variability associated 

with other prognostic covariates increase. In addition, there is an increase in RMSE (a shift of 

the distribution to the right) as the variability associated with prognostic covariates increases, 

though this is less evident in the synthetic RF and RF estimators.  

Figure 9 shows all 18 specifications with positive amounts of heterogeneity for the case 

of binary predictors and using the RF estimation method. Within each specification, there are 3 

levels of nuisance variables, 8, 16, and 32. 

It is clear that the largest increase in the spread or range of bias across individuals is 

added when prognostic covariates are included in the data generation model. Increasing the 

number of nuisance parameters causes a perceptible increase in the spread or range of bias 

across individuals in all specifications shown. This pattern is also very clear when synthetic RF is 

used as the estimation strategy (Figure 10). However, the spread or range of bias across 

individuals is much less in the case of synthetic RF (note the differences in the scale of the y-axis 

compared with that of Figure 9).  
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Figure 9. Bias Wwith RF Estimator, All Specifications With Different Numbers of Nuisance Parameters for Binary Predictors 

 
Heter Low Low Low Low Low Low Med Med Med Med Med Med High High High High High High 

Res Err Low Low Med Med High High  Low Low Med Med High High  Low Low Med Med High High 

V(Prog) None High None High None High None  High  None  High  None  High  None  High  None  High  None  High 

Abbreviations: Heter, heterogeneity; HTE, heterogeneity of treatment effects; Med, medium; Nui, nuisance; Res Err, residual error; RF, random forest; V(Prog), variability in 
prognostic covariates. 
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Figure 10. Bias With Synthetic RF Estimator, All Specifications With Different Numbers of Nuisance Parameters for Binary Predictors 

 
Heter Low Low Low Low Low Low Med Med Med Med Med Med High High High High High High 

Res Err Low Low Med Med High High  Low Low Med Med High High  Low Low Med Med High High 

V(Prog) None High None High None High None  High  None  High  None  High  None  High  None  High  None  High 

Abbreviations: Heter, heterogeneity; HTE, heterogeneity of treatment effects; Med, medium; Nui, nuisance; Res Err, residual error; RF, random forest; Syn, synthetic; V(Prog), 
variability in prognostic covariates. 
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In Figure 11, we can see that when predictors are continuous, the edge bias associated 

with RF is most pronounced. Note in the first decile (which has the most negative PITE) that the 

bias is clearly greater than zero and as you go to the middle of the PITE distribution that bias is 

near zero. Then, as you move toward the highest decile (where PITEs are most positive), the 

bias is centered below zero. As we hypothesized, this bias is less apparent in the binary case. 

We believe this is because with all binary predictors, there is a clumping of the cases in the 

feature space (at least with finite predictors). Finally, if you compare the bottom panel, which 

was estimated by synthetic RF, with binary predictors to the same binary predictor specification 

estimated with RF, there appears to be little difference in the amount of this edge bias. 
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Figure 11. Bias by Ordered Decile of the Ttrue TE 

 
 Abbreviations: RF, random forest; spec12, specification with medium heterogeneity, high residual variance and 

high variability associated with prognostic covariates; TE, treatment effect. 

 

Study 3 
Recall that study 2 extended the ITE estimate methodology to work with observational 

confounded data and compared 7 different methods of forming the ITE estimates.  

Figure 12 shows that the synCF and BART approaches have the lowest bias, and 

although both have low RMSE, synCF has the most precise estimates based on RMSE. These 

simulations show that our methods can be used to measure potential confounds and report the 
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construction of propensity scores. As long as all confounding variables are included in the RF 

prediction of counterfactual outcomes, the procedure will appropriately account for the 

confounding (without construction of propensity scores). Creating a propensity score machine 

would be useful for future implementation of the procedure, however. The propensity score 

machine can be used to ensure that future patient characteristics result in a propensity score 

that is neither 0 nor 1 (ie, not assigned to 1 treatment with certainty). This study has been 

published in the Journal of Computational and Graphical Statistics.5 
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Figure 12. Bias and RMSE for Ssimulations of Confounded Observational Data 

 
Abbreviations: BART, Bayesian additive regression trees; CF, counterfactual random forest; RF, random forest; 
RMSE, root mean square error; synCF, counterfactual synthetic random forest; VT, virtual twin; VT-I, virtual twin 

interaction. 
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Study 4 
Recall that study 4 extended the methods to create estimates of ITEs to survival 

outcomes. We also described the following 3 methods for determining whether an individual 

was suitable to have their treatment predicted for a particular treatment: RF-C, RF classification 

with calibration to expert knowledge; RF-D, RF distance with calibration to expert knowledge; 

and MRF, multivariate RF with direct estimation of expert knowledge. In a comparison of these 

3 approaches in terms of misclassification error, RF-C and RF-D were very close (0.32 and 0.35, 

respectively, across all treatments), and MRF had the lowest misclassification error (0.13). 

Given that expert knowledge cannot be considered a gold standard, all 3 of these approaches 

were examined in subsequent analyses. 

There is not a single number but rather a function comparing survival across each pair of 

treatments compared. To summarize the data, we compare these functions across averages 

across the sample. The ITEs can be used to create average TE (ATE) estimates as well as ATE in 

the treated (ATT) estimates. These are also both functions, rather than single numbers. Figure 

13 shows the results of pairwise comparisons based on the ATE and ATT. When the lines cross 

the black lines at zero, the ranking of the 2 treatments reverses at that time. From looking at 

panel (d), SVR appears everywhere to be superior to MVA, but this is really the only panel for 

which this is the case. Other things to note about the figure include that the sample used to 

compare the 2 procedures depends on and varies by the procedure used to determine eligibility 

for the treatment.  

Because the survival estimate for an individual is a full survival curve across time, it is 

more difficult to show the individual treatment estimates in a summary fashion. We can easily 

show these estimates at a particular time of follow-up. Figure 14 shows individual estimates for 

5 years after treatment, with confidence intervals calculated using subsampling.61  
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Figure 13. Pairwise Ccomparisons of Treatment Options on ATE and ATTa 

 
Abbreviations: ATE, average treatment effect; ATT, ATE in treated; CABG, coronary artery bypass graft; LCTx, listing 

for cardiac transplantation; MVA, mitral valve annuloplasty; SVR, surgical ventricular restoration. 
aATE and ATT eligibility was determined by 3 methods: RF-C, RF-D, and MRF. Black lines are ATE, blue lines are ATT 

for the first treatment listed in a panel, and red lines are ATT for those in the second treatment listed.  
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Figure 14. Confidence Iintervals for ITEs at Ttreatment Time= 5 Yyearsa 

 
Abbreviations: CABG, coronary artery bypass graft; ITEs, individual treatment effects; LCTx, listing for cardiac 
transplantation; MVA, mitral valve annuloplasty; SVR, surgical ventricular restoration. 
aBlue indicates significant TE (P < 0..05) for the treatment mentioned first in each panel. Red indicates significant 

TE (P < 0..05) for the second treatment mentioned in each panel. Patients are randomly ordered within blue and 

red. 
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Results of Aim 2 
Aim 2 was to develop user-friendly software integrated into randomForestSRC. There 

have been multiple releases of the randomForestSRC program incorporating our work on this 

project. A summary of the improvements to randomForestSRC includes the following: 

1. Enhanced synthetic forests (function rfsrcSyn()). This corrected issues with colnames of 
test set synthetic features. OOB data are now incorporated into the forest grow process, 
leading to overall better performance. 

2. Introduced bootstrap=“by.user”. This allows the user to control the bootstrap process 
and maintain in-bag/OOB tree membership across versions of synthetic forests across 
variation in tuning parameters. 

3. Introduced samp, sampsize, and samptype options. These are used for class-imbalanced 
data (where 1 class is far away from 50% of the sample). The Project AWARE data are 
class imbalanced when incidences of STIs are the outcome, for example, because 
incidences are around 10% to 2%, which is relatively imbalanced (far from 50%). 

4. Developed subsampling methodology, with function subsample (). This is used for 
estimates of standard errors and can create standard errors for treatment effectiveness. 
Another application is creating standard errors and confidence intervals for variable 
importance. 

5. Introduced conditional quantiles for a regression forest. This applies to both univariate 
and multivariate forests and can be used in both training and testing. The function 
returns the conditional quantiles for the target outcome. It is used when the treatment 
is continuous. 

6. Added a configure file to source package to allow more accessible OpenMP parallel 
execution on systems that support it. 

7. Added staggered interaction data (SID) clustering function. SID clustering is used for 
semi-supervised analyses to uncover HTE groups. This is an outgrowth of the split-merge 
algorithm and the unsupervised RF proposed in this project. SID clustering creates an 
enhanced SID feature space by sidification of the original variables. Sidification 
translates the variables to have nonoverlapping domains. Sidification results in (1) SID 
main features, which are the original features that have been shifted in order to make 
them strictly positive and staggered so all of their ranges are mutually exclusive; and (2) 
SID interaction features, which are the multiplicative interactions formed between every 
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pair of SID main features. MRFs are then trained to predict the main SID features using 
the interaction SID features as predictors. 
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DISCUSSION 
Our research has shown that RF can be successfully used to estimate ITEs, and in cases 

where heterogeneity is generated using a linear model, these estimates perform as well as 

parametric approaches such as GLM (study 2). This extends the work of Foster et al,1 who 

showed that the RF approach worked in the VT approach but did not compare across 

algorithms. We also saw that the synthetic RF approach outperformed GLM with linear data 

generation models, and to our knowledge, no one has examined the use of synthetic RF for the 

estimation of ITEs. We believe that the improved performance of synthetic RF over that of RF 

may be caused by smoothing the predictions by including information from multiple forests, 

each with different tree properties. Both RF and synthetic RF are nonparametric approaches 

that should do well with any distribution of data and with most models generating 

heterogeneity. Given the superior performance of the synthetic RF approach, we would 

recommend its use over the standard RF approach.  

We also saw in study 1 that RF outperformed the MI approaches when there were 

higher-order interactions and nonlinear interactions in the generating mechanism for HTE. This 

is consistent with our belief that different estimation methods of ITEs may be required for 

different applications of this approach. The nonparametric basis for RF (and synthetic RF) 

implies that it should perform well across many different data-generating mechanisms; 

however, there are undoubtedly particular heterogeneity-generating mechanisms for which 

other procedures may have better performance than RF-based estimates. We greatly expanded 

the types of algorithms that we examined beyond the simple RF approach because of our belief 

that different algorithms will be useful for our approach under different circumstances. 

Nevertheless, there remain numerous methods that we have not compared (eg, neural nets, 

support vector machines, boosted decision trees).62 A challenge for future research is to 

determine and understand the data conditions under which a specific tool should be used. This 

is, of course, complicated in real data because the data-generating mechanism is unknown. It 

may be that an ensemble approach, in which estimates across methods, including methods 
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which themselves are an ensemble, such as RF, would work well,63 and future research should 

explore this. 

Our research into the impact of the level or amount of heterogeneity (study 2) showed 

that as the level of heterogeneity increased, the amount of bias and the RMSE of the individual 

estimates increased, holding the sample size constant. With consideration, this seems logical. 

The identification of ITEs exploits individual characteristics or features to make the prediction; 

our predictions are conditional on the individual’s features. With sample size fixed and the 

distribution of features fixed (as was done in our simulations), increasing heterogeneity implies 

that within each region of the feature space, there will be more variability in the outcome; 

hence, our estimates of the “individual” TE will have more variability. If the mean of this region 

is assigned for all of those individuals that fall within the region, then the increased 

heterogeneity within the feature region means that the average bias in the region (ie, the 

deviation of the ITE from the individual’s true TE) will increase, as will the RMSE. 

The other interesting phenomenon observed in study 2 was that as we added in 

prognostic variables (recall that prognostic variables have an identical effect on outcomes 

across all possible treatments), the levels of both bias and RMSE increased, holding all other 

factors constant. We believe that this is caused by the error in predicting the prognostic impact. 

This is different from how we think of control variables in a regression framework, however. 

Controlling for variables in regression reduces residual variance and sharpens our inference on 

remaining variables or features (ie, it increases statistical power and helps us in our prediction). 

Here, prognostic factors that predict outcomes across treatments do not appear to help us in 

the prediction of ITEs and, in fact, hinder our efforts. This may be caused by the added noise of 

estimating the impact of these prognostic factors in different forests (1 for each treatment to 

be compared). Methods that focus on treatment interactions, such as those of Su et al,64 may 

not show this same pattern. 

It is also important to point out that the GLM-based predictions in these simulations had 

more bias across the individual predictions and larger RMSE than did the RF-based estimates, 

despite our data generation models having a linear form. This is likely due to the numbers of 
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nonpredictive covariates in the simulations. Although these simulations clearly had fewer 

nuisance variables included than would be found in a genetic study, for example, there were 

enough that the noise of estimating these extra (noninformative) coefficients degraded the 

performance of the GLM estimates. This could be addressed by some form of regularization 

procedure. Indeed, numerous investigators have examined the use of regularized models (for 

model selection) as a part of a procedure for either ITE prediction or subgroup discovery.26,65-68 

This research has also shown (study 3) that the RF approaches to predicting ITEs 

perform well using observational data if all confounding variables are observed and included in 

the feature set. Interestingly, this did not require inclusion of the propensity score in the 

feature set or stratification or matching on the propensity score. There are times, particularly 

with misspecification or measurement error, that propensity scores and disease risk scores can 

outperform regression adjustments of confounds.69,70 Research on variable selection in 

estimation of the propensity score has suggested that variables that are related to the outcome 

but not the exposure should be included in propensity score estimation because they improve 

the precision of the estimated TE without affecting bias,71 as long as there is no unmeasured 

confounding and all confounders are controlled so that strong ignorability holds.72-74 This same 

research showed that conversely, the inclusion of variables that are unrelated to outcome but 

related to exposure reduces the precision of the TE (without affecting bias). Our procedure will 

include variables related to the outcome but not the exposure (and our simulations do not 

include unmeasured confounding) and exclude variables unrelated to the outcome but related 

to the exposure, which may be a factor in this result. Future research should examine the case 

where not all confounders are measured. 

Study 3 also showed that BART performed similarly to the synthetic RF estimator, with, 

in some cases, slightly lower bias (but higher RMSE). In moderate samples with a relatively 

moderate number of features, BART may be a reasonable alternative to RF. However, for very 

large problems (eg, those with extensive numbers of features, such as when genetic features 

are included), RF approaches will be much more scalable.  
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Finally, in study 4, we showed how the RF approach can be expanded to include survival 

outcomes and with multiple different treatments. The application for this examination used 

observational data. With a survival outcome, the estimate of ITEs is a function, and the ranking 

of treatments could thus change over time. Therefore, a particular treatment has a lower 

probability of early survival relative to a different treatment for an individual, but that same 

treatment may have higher rates of long-run survival; that is, the survival curves may cross. This 

issue will also arise when we consider longitudinal measures of outcome. There clearly may be 

treatment comparisons where outcomes are better immediately after a particular treatment; 

however, there is a quicker decay of the impact, so that in the longer run, the individual may be 

better off with the treatment that maintains its effectiveness longer. Our examinations have 

not addressed longitudinal outcomes (other than the survival context). 

Study Limitations 
Although our research has many strengths, there are some limitations. As noted 

previously, there are many machine learning approaches that could be used to estimate ITEs. 

Whereas we have expanded our investigation beyond what we proposed in our PCORI contract, 

there are still many approaches (eg, support vector machines and targeted learning) that we 

have not explored. Clearly, our research is limited by the focus on tree-based machine learning 

approaches. We feel this may be warranted due to their nonparametric basis, but other 

methods may have equal or better performance. Second, again as noted previously, we have 

not addressed ITE estimates when the outcome is longitudinally measured as in a trajectory of 

outcome after treatment. An important limitation is that we have not addressed individual 

uncertainty regarding the ITE estimate. In machine learning approaches where there is 

frequently an iterative procedure to select a model, this has been a rather difficult problem. We 

devoted considerable effort to using subsampling61 of our entire PITE procedure, but we had 

little success. There have been very recent advances in this area on RFs. Wager and Athey6 have 

shown that when trees are grown using subsampling without replacement, the results are 

asymptotically Gaussian, and this result can be used to form asymptotic confidence intervals. 

Their approach to estimating ITEs, however, estimates both treatments together and estimates 

treatment differences within the terminal node. This greatly simplifies the subsampling process. 
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Su et al64 use the infinitesimal jackknife within their interaction tree approach. Loh et al75 use a 

bootstrapping approach, whereas other researchers have used Bayesian approaches.76,77 

Finally, our assessment of confounding only explored the situation where all confounders are 

observed and included in the feature set. Exploration of situations where confounders are 

partially masked may be informative.  

Future Research 
On the methodological front, our study limitations could be used as a blueprint for 

future research. However, we feel that although there is more work to be done 

methodologically, these methods are at the point where increased emphasis should be on their 

application in specific fields. We are exploring ways to support greater application of these 

methods in the areas of cancer (Ishwaran and Lu) and in substance abuse treatment and 

behavioral treatments for HIV (Feaster).  
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CONCLUSIONS 
RF is a flexible, nonparametric method that can be used to estimate ITEs, which could 

become an important component of treatment planning. It is one of several promising methods 

for estimating ITEs. When the relationship between an individual’s characteristics and their 

outcomes under different treatments has simple, parametric forms and all the variables used to 

generate the data are included in the set of variables used to make the prediction, most of 

these methods, both RF based and many others, such as MI, can do a good job. However, when 

we created complex interaction terms (using transformations of variables that are then not 

included in the set of features used to predict outcomes), the MI method failed to make correct 

individual estimates.  

We have extended the use of RF-based approaches to include observational confounded 

data. The RF approach works quite well at correcting confounding as long as all confounders are 

included in the set of characteristics used to predict the ITEs. We have also expanded these 

approaches to survival outcomes and multiple treatments. Our multiple-treatment approach 

specifically assesses whether the overlap in participant characteristics among the samples is 

sufficient to make pairwise comparisons.  
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