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1 INTRODUCTION:
BREIMAN-CUTLER VARIABLE
IMPORTANCE

Williamson et al. present a variable index related to 𝑅2 but
with the property of being free of model specification. We
congratulate the authors on this very interesting paper.
Our first point is to draw an important connection

between this work and existing work in machine learn-
ing. In their introduction, the authors briefly mention the
variable importance measure used in Breiman (2001). The
authors state that this and related measures used for ran-
dom forests are intimately tied to the specific estimation
technique used, in contrast to the agnostic procedure they
propose. However, we will argue there is a much deeper
connection than might be apparent.
Denoting PE for prediction error, the general principle

underlying Breiman (2001) was to define importance using
a prediction error approach. Breiman (2001) defined the
variable importance 𝐼𝑛,𝑠 for a set of variables 𝑠 as the dif-
ference in prediction error for the full model compared to
the model without 𝑠,

𝐼𝑛,𝑠 = PE(model without 𝑠) − PE(full model). (1)

The rationale being that if 𝑠 contains informative variables,
then removing 𝑠will increase prediction error and 𝐼𝑛,𝑠 > 0.
The larger the value, the more evidence of 𝑠’s importance.

On the other hand, if 𝑠 contains only noisy variables, then
removing 𝑠 may reduce prediction error relative to the full
model, or at the very least it will not increase, and thus
𝐼𝑛,𝑠 ≤ 0.
How one actually calculates prediction error for the 𝑠-

restricted model is crucial and one of the clever aspects
of Breiman (2001). This ideawas actually developed by Leo
Breiman in collaboration with Adele Cutler and is there-
fore often called Breiman-Cutler variable importance. We
will hereafter simply abbreviate this as BC-VIMP (where
VIMP stands for variable importance, Ishwaran, 2007; Ish-
waran et al., 2008). Let 𝜇̂𝑇(𝑋,Θ𝑣) be the 𝑣 = 1,… , 𝑉 tree
estimator for the unknown target function𝜇0(𝑋) estimated
with respect to a loss function 𝓁(𝑌, 𝜇). Here {Θ𝑣}

𝑉
𝑣=1

are
independent and identically distributed random instruc-
tions used to grow each tree. This includes, for exam-
ple, instructions for splitting the learning data into train-
ing data used to grow the tree and out-of-sample data
used for testing. The latter indices are denoted by 𝑣 for
tree 𝑣.
BC-VIMP is obtained by averaging over treeVIMP: 𝐼𝑛,𝑠 =

𝑉−1∑𝑉

𝑣=1
𝐼𝑣𝑛,𝑠, where 𝐼𝑣𝑛,𝑠 is the vimp for tree 𝑣 defined by

𝐼𝑣𝑛,𝑠 =
1|𝑣| ∑

𝑖∈𝑣

𝓁
(
𝑌𝑖, 𝜇̂𝑇

(
𝑋̃
(𝑠)

𝑖
, Θ𝑣

))

−
1|𝑣| ∑

𝑖∈𝑣

𝓁(𝑌𝑖, 𝜇̂𝑇(𝑋𝑖, Θ𝑣)). (2)
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The value 𝑋̃(𝑠) represents 𝑋 when the coordinates 𝑋𝑠 have
been randomly permuted. In (2), only out-of-sample cases
𝑣 have their 𝑠 coordinates randomly permuted. These
values (𝑋̃

(𝑠)

𝑖
)𝑖∈𝑣

are run through the tree to estimate
PE(model without 𝑠).
There are two key points in the above calculation that

we highlight:

(P1) Calculating the 𝑠-restricted model estimator:How one
calculates the 𝑠-restricted model estimator is very
flexible. What BC-VIMP does is to “noise” up the 𝑠
coordinates, 𝑋𝑠, by permuting them, thereby obtain-
ing a noised up estimator with the intention tomimic
a model with 𝑠 removed. The main advantage of this
is that it is computationally fast, therefore it can be
used for high-dimensional and big data problems.

(P2) The same estimator is used to calculate both terms
in (2): The same estimator 𝜇̂𝑇(𝑋,Θ𝑣) is used to
calculate prediction error for both the 𝑠-restricted
and full model. Using the same tree harness elim-
inates Monte Carlo variability that would occur
otherwise.

2 VIMP FOR REGRESSION AND A
GENERAL FRAMEWORK

The framework (2) and its over-arching principle (1) are
very general and applicable to many settings. For exam-
ple, extensions include random survival forests (Ishwaran
et al., 2008) and competing risk forests (Ishwaran et al.,
2014). Approaches based on (1) are also used by many
machine learning methods, such as boosting. In fact,
there is nothing special about a tree or a random for-
est that is required to use (1). Thus we can describe a
more general framework by replacing the estimator 𝜇̂𝑇
with any other estimator; let us call this 𝜇̂∗. As before
the estimator is constructed from training data and pre-
diction error calculated using out-of-sample data, denoted
by 𝑣, where 𝑣 = 1,… , 𝑉. Write 𝜇̂∗𝑣 for the training data
estimator. We now have the following general VIMP
framework,

𝐼𝑣𝑛,𝑠 =
1|𝑣| ∑

𝑖∈𝑣

𝓁(𝑌𝑖, 𝜇̂
∗
𝑠,𝑣(𝑋𝑖)) −

1|𝑣| ∑
𝑖∈𝑣

𝓁(𝑌𝑖, 𝜇̂
∗
𝑣(𝑋𝑖)).

(3)

In (3), 𝜇̂∗𝑠,𝑣 denotes the 𝑠-restricted estimator. The only con-
straint is it satisfies (P2) requiring it uses the full model
estimator 𝜇̂∗𝑣 . One example we have discussed is permuta-

tion importance, 𝜇̂∗𝑠,𝑣 = 𝜇̂∗𝑣(𝑋̃
(𝑠)

𝑖
). However, this is not the

only method, nor is necessarily the best method that can
be used. For example, Lu and Ishwaran (2018) described a
general technique for restricted model estimation in para-
metric models. Rather than permuting𝑋𝑠, they replace the
estimated coefficients for 𝑋𝑠 in the full model with values
of zero.
Now we show how this is related to the authors’ work.

Let us begin by looking at Equation (10) of their paper.
For the comparison, we rescale their estimator by the sam-
ple variance and denote the estimator using a tilde. The
authors’ rescaled equation (10) is

𝜓̃𝑛,𝑠 =
1

𝑛

𝑛∑
𝑖=1

{𝑌𝑖 − 𝜇̂𝑠(𝑋𝑖)}
2 −

1

𝑛

𝑛∑
𝑖=1

{𝑌𝑖 − 𝜇̂(𝑋𝑖)}
2.

Thus 𝜓̃𝑛,𝑠 is the difference in sum-of-squared values for the
restricted versus full model. As this is ameasure calculated
from the full learning data, it is not directly comparable
to (3). However, Williamson et al. also describe a cross-
validated version of their estimator in their Algorithm 2.
Their rescaled estimator (line 6, Algorithm 2) is

𝜓̃𝑣
𝑛,𝑠 =

1|𝐷𝑣| ∑
𝑖∈𝐷𝑣

{𝑌𝑖 − 𝜇̂𝑠,𝑣(𝑋𝑖)}
2 −

1|𝐷𝑣| ∑
𝑖∈𝐷𝑣

{𝑌𝑖 − 𝜇̂𝑣(𝑋𝑖)}
2,

(4)

where𝐷𝑣 is a test-set fold, 𝑣 = 1,… , 𝑉, using𝑉-fold estima-
tion. Here 𝜇̂𝑣 denotes the full model estimator calculated
using the 𝑣th-fold training data and 𝜇̂𝑠,𝑣 is an 𝑠-restricted
model estimator calculated using the same 𝑣-fold train-
ing data.
When specialized to 𝐿2-loss, 𝓁(𝑌, 𝜇) = (𝑌 − 𝜇)2, upon

comparing (3) to (4) we see an obvious similarity. It is also
clear now that (4) is an example of the general VIMP prin-
ciple (1). Indeed, the key issue comes down to (P1) in how
one defines the restricted model estimator. The approach
used by the authors to calculate 𝜇̂𝑠,𝑣 (line 5, Algorithm 2)
is to use the full model estimator 𝜇̂𝑣 and regress this on
𝑋−𝑠. This is very interesting because what the authors
are proposing is essentially a new technique for restricted
model estimation for regression. This can be added to the
growing list of such techniques (Table 1) and in our opinion
is a valuable hidden contribution of the paper. Note that
the rationale for using the full model estimator 𝜇̂𝑣 in cal-
culating both prediction error terms as in (P2) is explained
by the authors on page 9 of their paper. They make special
mention of this stating they did this because themore obvi-
ous method of regressing 𝑌 on 𝑋−𝑠 was found to generally
lead to incompatible results.
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TABLE 1 Different methods and their relationship to the general VIMP framework

Method Loss, 𝓵(𝒀, 𝝁) Learner, 𝝁∗ 𝝁̂∗
𝒔,𝒗, 𝒔-restricted estimator

𝜓̂𝑣
𝑛,𝑠

a (𝑌 − 𝜇)2 Any Regress 𝜇̂𝑣 on 𝑋−𝑠

BC-VIMP b Any Tree Permute 𝑋𝑠

LI-VIMPc Any Parametric model Set coefficients for 𝑋𝑠 to zero
LI-VIMPc Any Nonparametric model Permute 𝑋𝑠

𝐼𝑣𝑛,𝑠
d Any Any Any

aWilliamson, B. et al.’s estimator from Algorithm 2.
bBreiman-Cutler VIMP.
cRefers to method of Lu and Ishwaran (2018).
dGeneralized VIMP; see (3).

3 DIMENSIONALITY: SOME
EXTENSIONS AND THE BENEFIT
OF PREDICTION ERROR

Another point we wish to mention relates to dimensional-
ity and noise. We show that the magnitude of the author’s
estimator 𝜓̂𝑛,𝑠 can depend on the size of 𝑠, hence values
of 𝜓̂𝑛,𝑠 may not be comparable across models of different
dimension. As an attempt to account for this phenomenon,
we can define an adjusted 𝜓̂𝑛,𝑠 that is similar to adjusted
𝑅2,

𝜓̂
adj
𝑛,𝑠 =

[
1

𝑛 − (𝑝 − |𝑠|) − 1

𝑛∑
𝑖=1

{𝑌𝑖 − 𝜇̂𝑠(𝑋𝑖)}
2

−
1

𝑛 − 𝑝 − 1

𝑛∑
𝑖=1

{𝑌𝑖 − 𝜇̂(𝑋𝑖)}
2

]/
VARtot,

where VARtot =
∑𝑛

𝑖=1
(𝑌𝑖 − 𝑌̄𝑛)

2∕(𝑛 − 1). However, this
adjustment could be too weak because the value of 𝑛 −

(𝑝 − |𝑠|) − 1 could be dominated by 𝑛. Another option is
to add a ratio to the first term, 𝑘 ∶= 𝑘(𝑝, 𝑠), and to modify
the estimator as follows:

𝜓̂𝑘
𝑛,𝑠 =

[
𝑘(𝑝, 𝑠)

𝑛 − (𝑝 − |𝑠|) − 1

𝑛∑
𝑖=1

{𝑌𝑖 − 𝜇̂𝑠(𝑋𝑖)}
2

−
1

𝑛 − 𝑝 − 1

𝑛∑
𝑖=1

{𝑌𝑖 − 𝜇̂(𝑋𝑖)}
2

]/
VARtot.

One example for the ratio could be 𝑘(𝑝, 𝑠) =

ln(𝑝∕|𝑠|)∕ ln(𝑝), where when |𝑠| = 1, we have 𝑘(𝑝, 𝑠) = 1

and 𝜓̂𝑘
𝑛,𝑠 = 𝜓̂

adj
𝑛,𝑠 .

We use the simulation of setting 𝐴 in Section 3.3 to dis-
play how 𝜓̂𝑛,𝑠, 𝜓̂

adj
𝑛,𝑠 , and 𝜓̂𝑘

𝑛,𝑠 change with expanding fea-
ture sizes, 𝑠 = {6}, {6, 7}, {6, 7, 8}, {6, 7, 8, 9}, {6, 7, 8, 9, 10}.
We follow Algorithm 1 and estimate 𝜇̂ and 𝜇̂𝑠 using gra-
dient boosted trees as the authors did. A total of 50 inde-
pendent datasets of size 𝑛 = 300 and 𝑛 = 500 were sim-

ulated. Results are displayed in Figure 1. Since 𝑋6 and
𝑋7 are the only informative variables, we expect the vari-
able importance to increase from 𝑠 = {6} to 𝑠 = {6, 7}.
In other words for an estimator 𝜓̂∗

𝑛,𝑠, we would expect
𝜓̂∗
𝑛,{6,7}

> 𝜓̂∗
𝑛,{6}

if 𝜓̂∗
𝑛,{7}

> 𝜓̂∗
𝑛,{6}

and 𝜓̂∗
𝑛,𝑠 measures “aver-

age” effect size of features in 𝑠. Or 𝜓̂∗
𝑛,{6,7}

> 𝜓̂∗
𝑛,{6}

if
𝜓̂∗
𝑛,{7}

> 0 and 𝜓̂∗
𝑛,𝑠 measures the “joint” effect size of fea-

tures in 𝑠. However, we would not wish such increases
to occur from 𝑠 = {6, 7} to 𝑠 = {6, 7, 8}, from 𝑠 = {6, 7, 8} to
𝑠 = {6, 7, 8, 9}, and so forth, since 𝑋8, 𝑋9, and 𝑋10 are noise
variables.
Figure 1 shows that as noise variables are added and

size of 𝑠 increases, 𝜓̂𝑘
𝑛,𝑠 helps reduce inflated values seen

for 𝜓̂𝑛,𝑠. Values for 𝜓̂
adj
𝑛,𝑠 are similar to 𝜓̂𝑛,𝑠, confirming

that its dimensionality adjustment is too weak. Of course,
from such small sample sizes, the estimation of 𝜓̂𝑛,𝑠 could
be biased, hence variable importance may not be able to
measure the average or joint effect sizes in perfect pro-
portion. Therefore, to test this, we have added to Figure 1
another line “BC-VIMP” that are Breiman-Cutler impor-
tance values, standardized by VARtot. Values were calcu-
lated using the vimp function from the randomForestSRC
R-package (Ishwaran and Kogalur, 2020). We can imme-
diately see that BC-VIMP values conform to what we had
expected to see: importance values increase from 𝑠 = {6}

to 𝑠 = {6, 7} and then immediately flatten off. In fact there
even seems to be a downward trend for BC-VIMP for the
overfit models. The latter occurs as a benefit of using pre-
diction error as prediction error will increase with addition
of noise. Finally, we have also adjusted BC-VIMP by 𝑘 for
comparison. As can be seen the adjustment further pushes
importance downwards for the overfit models.

4 CONCLUSIONS

In their paper, the authors have introduced not one, but
actually two estimators. The first 𝜓̂𝑛,𝑠 (Algorithm 1) is con-
structed from the full learning dataset. Although we did
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F IGURE 1 Comparison of variable importance measures with increasing size of feature set 𝑠 for sample sizes 𝑛 = 300 (left) and 𝑛 = 500

(right). Adjusted variable importancemeasures 𝜓̂adj𝑛,𝑠 and 𝜓̂𝑘
𝑛,𝑠 are shown in red and blue, respectively, and the unadjustedmeasure 𝜓̂𝑛,𝑠 is marked

in black color. The datasets are generated according to the simulation of setting𝐴 in Section 3.3, where only𝑋6 and𝑋7 are informative variables
in all the chosen feature sets. Values of 𝜓̂𝑛,𝑠 and 𝜓̂

adj
𝑛,𝑠 are similar and both become inflated as noise variables are added. On the other hand, 𝜓̂𝑘

𝑛,𝑠

performs much better due to its heavy dimensionality penalty. Also included in figure are BC-VIMP values displayed in purple. By being based
on prediction error, BC-VIMP automatically adjusts for dimensionality and does not overfit with addition of noise and performs correctly.
Orange lines are BC-VIMPmultiplied by dimensionality parameter 𝑘. This further pushes VIMP values downwards for overfit models. Finally,
note BC-VIMP has been scaled by 10−4 and 10−3 for left and right figures. Thus for model 𝑠 = {6, 7}, the value is approximately 7% for 𝑛 = 300

and 10% for 𝑛 = 500. This is very interpretable and is stating that the model with the two nonzero variables explains a relatively high fraction
of the variance over test data. This type of interpretation is not possible with estimators like 𝜓̂𝑛,𝑠 that are not prediction error based. This figure
appears in color in the electronic version of this article, and any mention of color refers to that version.

not comment much about this version in our discussion,
one major advantage of 𝜓̂𝑛,𝑠 is that it is far more amenable
to theoretical analysis than a prediction error based esti-
mator, such as their second estimator, 𝜓̂𝑣

𝑛,𝑠. In fact this is
what the authors have done.Using empirical processes and
semiparametric theory, they have developed a comprehen-
sive analysis for 𝜓̂𝑛,𝑠 that provides justification for the pro-
cedure and identifies its asymptotic limiting distribution
for certain cases, and we commend the authors on doing
so. Regarding the limiting distribution of Theorem 1, the
authors use this for developing confidence intervals using a
plug-in estimator. We would like to mention another tech-
nique that has been used for constructing confidence inter-
vals for VIMP based on subsampling (Ishwaran and Lu,
2019). This method is applicable to many settings includ-
ing survival, regression, and classification problems. By
being based on subsampling theory, the conditions needed
are different than those used here. In particular, condi-
tion (A1) requires a rate condition for the underlying esti-
mation technique, whereas for the subsampling estimator,
one only requires the existence of a limiting distribution.
This could be useful as proving (A1) may be difficult for
machine learning methods. From a more practical stand-

point, subsampling is highly computationally efficient and
therefore opens up applications to high dimensional and
big data scenarios.
This brings us to the authors second estimator 𝜓̂𝑣

𝑛,𝑠

(Algorithm 2), which we have discussed in more detail.
This estimator unlike the full data estimator is predic-
tion error based and as we have argued is an example
of the general principle (1) described by Breiman (2001).
As we commented, the authors are proposing a new
technique for restricted model estimation (Table 1). To cal-
culate the first term in (1), they regress the full estimator
on 𝑋−𝑠. This is interesting and we wish they had provided
empirical results of its effectiveness. In fact, we believe this
estimator will prove superior to 𝜓̂𝑛,𝑠. We illustrated already
some problems with the latter. Other issues to mention are
in the results of real data applications: all values of 𝜓̂𝑛,𝑠

appear positive and confidence intervals do not cover zero,
which couldmislead one to believe 𝜓̂𝑛,𝑠 can only rank vari-
ables, but is unable to separate noise variables. We believe
these and other issues will be remedied by a prediction
error based VIMP.
In closing, we congratulate the authors for their contri-

butions to the area of variable importance. We also thank
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the editor(s) for giving us an opportunity for sharing our
insights on thiswork. There aremany interesting ideas and
potentially important theoretical work thatmay find inspi-
ration from this article and its discussion.
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