Supplementary Materials for

Cure and death play a role in understanding dynamics for COVID-19: data-driven competing risk compartmental models, with and without vaccination

Min Lu¹, Hemant Ishwaran^{1^{±*}}

¹Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA

S1 Susceptible Infectious Cure Death (SICD) model

We generalize the classical SIR model [32] via the following set of ordinary differential equations:

$$\frac{dS}{dt} = -\frac{\beta(t)IS}{N}
\frac{dI}{dt} = \frac{\beta(t)IS}{N} - \gamma(t)I$$
(S1)
$$\frac{dR}{dt} = \gamma(t)I,$$

1

where S is number of susceptible, I is number of infected, R is number of removed (either died or recovered), N = S + I + R is the total population which is assumed to be fixed, $\beta(t)$ is the contact rate at time t, equal to average number of contacts per person per time multiplied by probability of disease transmission between a susceptible and infectious case at time t, and $\gamma(t)$ denotes the removal rate at time t. In the classical SIR model, $\beta(t)$ and $\gamma(t)$ are assumed to be constants, $\beta(t) = \beta$ and $\gamma(t) = \gamma$ [32–35].

We extend [S1] to incorporate flexible survival models for length of infectious time. We refer to this as the Susceptible Infectious Cure Death (SICD) model. Let X be the continuous event time of an infected individual who either recovers from infection or dies due to infection. Let $\delta \in \{1, 2\}$ be the indicator recording which event occurs: $\delta = 1$ denotes cure (recovery); $\delta = 2$ denotes death. Let $F_j(x) = \mathbb{P}\{X \le x, \delta = j\}$ be the cumulative incidence function (CIF) defined as the probability of experiencing the event j = 1, 2 by time x. The CIF is related to the complementary cumulative distribution function (CCDF) $\overline{F}(x) = \mathbb{P}\{X \ge x\}$ by the identity

$$\bar{F}(x) = 1 - \mathbb{P}\{X \le x\} \\ = 1 - [\mathbb{P}\{X \le x, \delta = 1\} + \mathbb{P}\{X \le x, \delta = 2\}] \\ = 1 - F_1(x) - F_2(x).$$

Observe that x refers to the time passed in an infectious period for an infected case, not the time t passed since an epidemic outbreak. 17

An important quantity is the cause-specifc hazard function. The cause-specific hazard h_1 for cure and h_2 for death are

$$h_j(x) = \lim_{\Delta \downarrow 0} \left\{ \frac{\mathbb{P}\{x - \Delta \le X \le x + \Delta, \delta = j | X \ge x\}}{\Delta} \right\} = \frac{f_j(x)}{\bar{F}(x)}, \qquad j = 1, 2$$

where $f_j(x) = dF_j(x)/dx$ is the pseudo-density function where $f_1 + f_2 = f$ and f is the density of X. The following result characterizes the removal rate $\gamma(t)$ in terms of the cause-specific hazard functions.

Theorem 1. Let $X(t) \in [0, \infty)$ be the length of time an individual has been infected at time t and denote its probability density function by $f_{X(t)}(x)$ where $\int_0^\infty f_{X(t)}(x) dx = 1$. Then 22

$$\gamma(t) = \int_0^\infty \left[h_1(x) + h_2(x) \right] f_{X(t)}(x) \, dx.$$
 (S2)

Proof. The number of newly removed cases at time t equals

$$\begin{aligned} \frac{dR}{dt} &= I \cdot \lim_{\Delta \downarrow 0} \left\{ \frac{\mathbb{P}\{X(t) - \Delta \le X \le X(t) + \Delta\}}{\Delta} \right\} \\ &= I \cdot \lim_{\Delta \downarrow 0} \left\{ \Delta^{-1} \int_0^\infty \mathbb{P}\{x - \Delta \le X \le x - \Delta | X(t) = x\} f_{X(t)}(x) \, dx \right\} \\ &= I \cdot \lim_{\Delta \downarrow 0} \left\{ \Delta^{-1} \int_0^\infty \mathbb{P}\{x - \Delta \le X \le x - \Delta | X \ge x\} f_{X(t)}(x) \, dx \right\} \\ &= I \cdot \int_0^\infty \frac{f(x)}{\bar{F}(x)} f_{X(t)}(x) \, dx \\ &= I \cdot \int_0^\infty \frac{f_1(x) + f_2(x)}{\bar{F}(x)} f_{X(t)}(x) \, dx. \end{aligned}$$

Comparing this with $dR/dt = I\gamma(t)$ in [S1] establishes [S2] as $h_j = f_j/\bar{F}$ by definition. \Box 24

Corollary 1. If the cause-specific incidence functions are specified exponentially by

$$F_1(x) = \frac{\lambda_1}{\gamma} (1 - e^{-\gamma x}) \quad and \quad F_2(x) = \frac{\lambda_2}{\gamma} (1 - e^{-\gamma x}), \tag{S3}$$

where $\lambda_1 + \lambda_2 = \gamma$, then X is exponentially distributed with mean $1/\gamma$ and the cause-specific hazards are constants λ_1 and λ_2 and $\gamma(t) = \gamma$.

Proof. By [S3], the pseudo-density functions are

$$f_1(x) = \frac{dF_1(x)}{dx} = \lambda_1 e^{-\gamma x}$$
 and $f_2(x) = \frac{dF_2(x)}{dx} = \lambda_2 e^{-\gamma x}$.

Because $\lambda_1 + \lambda_2 = \gamma$,

$$\bar{F}(x) = 1 - F_1(x) - F_2(x) = 1 - \frac{\lambda_1 + \lambda_2}{\gamma} (1 - e^{-\gamma x}) = e^{-\gamma x}.$$

Therefore X is exponentially distributed with mean $1/\gamma$. Further, the cause-specific hazards are

$$h_1(x) = \frac{f_1(x)}{\bar{F}(x)} = \lambda_1$$
 and $h_2(x) = \frac{f_2(x)}{\bar{F}(x)} = \lambda_2.$

Hence by Theorem 1, $\gamma(t) = \int_0^\infty [\lambda_1 + \lambda_2] f_{X(t)}(x) dx = \gamma \int_0^\infty f_{X(t)}(x) dx = \gamma.$

Corollary 1 shows that the classical SIR model assumes an exponential distribution for X and constant cause-specific hazards. This has many implications: in particular the assumption of a fixed constant hazard process for cure and death will not be flexible enough for COVID-19 modeling. The exponential assumption also forces the value of mortality to a specific value. 32

Definition 1. Define the mortality rate of the disease, denoted by M_{death} , as the limit of the CIF for the cause-specific death event: $M_{\text{death}} = \lim_{x \to \infty} F_2(x)$.

23

Thus under the classical SIR model, the mortality rate is a fixed ratio of the death and cure rates specified by:

$$M_{\text{death}} = \lim_{x \to \infty} F_2(x) = \lim_{x \to \infty} \frac{\lambda_2}{\gamma} (1 - e^{-\gamma x}) = \frac{\lambda_2}{\lambda_1 + \lambda_2}.$$
 (S4)

Theorem 1 allows us to utilize flexible survival models for $\gamma(t)$ using hazard functions that are more realistic than the exponential. Section S1.1 formalizes how this is accomplished through a competing risk formulation. We note that although it is almost impossible to identify $f_{X(t)}(x)$ in a closed format, which is required in the specification of $\gamma(t)$ and $dR/dt = I\gamma(t)$, we introduce a discrete time algorithm to compute $I \cdot f_{X(t)}(x)$ numerically in Section 1S1.3. The key step is to count cure and death separately when calculating removed cases, which holds by Theorem 1 due to

$$\frac{dR}{dt} = I \int_0^\infty \left[h_1(x) + h_2(x) \right] f_{X(t)}(x) \, dx = I \int_0^\infty h_1(x) f_{X(t)}(x) \, dx + I \int_0^\infty h_2(x) f_{X(t)}(x) \, dx$$

Although this type of numerical solution will not provide analytical results for equilibrium stability and asymptotic behavior analysis, it is well suited for modeling discrete time data such as COVID-19.

S1.1 Reformulation of the CIF using competing risks

The CIF is a basic quantity in competing risks and plays a key role in calculations of [S1]. ⁴¹ However, the CIF is not an easy or intuitive quantity to work with due to it being a complex function of the cause-specific hazards. This can be seen by the following argument. Recall $f_j = \bar{F}h_j$, and therefore ⁴⁴

$$F_j(x) = \int_0^x f_j(s) \, ds = \int_0^x \bar{F}(s) h_j(s) \, ds = \int_0^x \bar{F}(s) \, dH_j(s) \tag{S5}$$

where $H_j(x) = \int_0^x h_j(s) ds$ is the cause-specific cumulative hazard function (CHF). By the mutual exclusiveness of competing risks, the hazard for X is $h(x) = h_1(x) + h_2(x)$. Because X is a continuous random variable, $\bar{F}(x) = \exp(-H(x))$ where $H(x) = \int_0^x h(s) ds$ is the CHF for X. Therefore,

$$F_j(x) = \int_0^x \exp\left(-\int_0^s \sum_{l=1}^2 h_l(u) \, du\right) dH_j(s)$$
(S6)

which is a complicated function involving both cause-specific hazards.

Now we describe the CIF in a different way. The reformulation will allow us to use hazard functions of our chosing, thus permitting flexible and intuitive modeling, but will also be done in such a manner so as to simplify downstream numerical calculations. Let X_j be a continuous random variable with hazard h_j for j = 1, 2. The key point here is that the hazard for X_j is selected to match the desired cause-specific hazard function, however X_j is an entirely theoretical construct that in no way is related to the true event time X. Let f_{T_j} and F_{T_j} be the density and cumulative distribution function (CDF) for X_j . Thus

$$h_j(x) = \frac{f_{T_j}(x)}{1 - F_{T_j}(x)} = \frac{f_{T_j}(x)}{\bar{F}_{T_j}(x)}$$

where $\bar{F}_{T_i}(x) = \exp(-H_j(x))$ is the CCDF for X_j . We can rewrite [S6] as

$$F_j(x) = \int_0^x \exp(-H_1(s)) \exp(-H_2(s)) \, dH_j(s)$$

49

37

38

39

and therefore

$$F_j(x) = \int_0^x \bar{F}_{T_1}(s)\bar{F}_{T_2}(s)h_j(s)\,ds = \int_0^x \bar{F}_{T_1}(s)\bar{F}_{T_2}(s)\frac{f_{T_j}(s)}{\bar{F}_{T_j}(s)}\,ds.$$

Cancelling the common value in numerator and denominator we obtain

$$F_1(x) = \int_0^x \bar{F}_{T_2}(s) \, dF_{T_1}(s), \quad F_2(x) = \int_0^x \bar{F}_{T_1}(s) \, dF_{T_2}(s), \tag{S7}$$

which presents us with a useful characterization of the CIF that can be deployed in our algorithms. Notice also by [S5], the above implies

$$f_1(x) = \bar{F}_{T_2}(x)f_{T_1}(x) = \begin{bmatrix} 1 - F_{T_2}(x) \end{bmatrix} f_{T_1}(x), \quad f_2(x) = \bar{F}_{T_1}(x)f_{T_2}(x) = \begin{bmatrix} 1 - F_{T_1}(x) \end{bmatrix} f_{T_2}(x).$$

S1.2 Basic reproduction number

The basic reproduction number, denoted as R_0 , equals expected number of infections arising due to contact with a positive case in a population where all individuals are susceptible to infection [36–38]. Because [S1] assumes a potentially non-constant contact rate $\beta(t)$, the reproduction number is allowed to change across time.

Definition 2. Define the basic reproduction number at time t as expected number of cases arising due to contact with an individual who is infected at time t where all individuals are susceptible to infection: 58

$$R_0(t) = \mathbb{E}\left[\int_t^{t+X} \beta(s) \, ds\right] = \int_0^\infty \left[\int_t^{t+x} \beta(s) \, ds\right] \left[f_1(x) + f_2(x)\right] dx.$$
(S8)

The length of infectious time X is a random variable. A useful way to summarize its value is by the mean which can be conveniently calculated using the CCDF [39].

Definition 3. Define the mean infectious period, denoted by \overline{X} , as the expected value of infectious time:

$$\bar{X} = \int_0^\infty x f(x) \, dx = \int_0^\infty \bar{F}(x) \, dx = \int_0^\infty \left[1 - F_1(x) - F_2(x) \right] dx.$$
(S9)

The inverse of the mean infectious time $1/\bar{X}$ represents a target value for assessing whether $R_0(t) < 1$ or $R_0(t) > 1$.

Theorem 2. If $\beta(t)$ has an upper bound such that $\beta(t) \leq 1/\overline{X}$, then $R_0(t) \leq 1$.

Proof.

$$R_0(t) = \mathbb{E}\left[\int_t^{t+X} \beta(s) \, ds\right] \le \frac{1}{\bar{X}} \cdot \mathbb{E}\left[\int_t^{t+X} ds\right] = \frac{1}{\bar{X}} \cdot \mathbb{E}[X] = 1.$$

Observe when $\beta(t) = \beta$ is a constant, as assumed by the classical SIR model, we have

$$R_0(t) = \mathbb{E}\left[\int_t^{t+X} \beta \, ds\right] = \beta \cdot \mathbb{E}\left[\int_t^{t+X} ds\right] = \beta \cdot \mathbb{E}[X] = \beta \bar{X} := R_0.$$

Therefore under the exponential model we have the following characterization of the basic reproduction number. 68

50

51

52

53

54

55

Theorem 3. For the exponential model described in Corollary 1, the mean infectious period is

$$\bar{X} = \int_0^\infty \left[1 - F_1(x) - F_2(x) \right] dx = \int_0^\infty e^{-\gamma x} dx = 1/\gamma.$$

Thus $R_0 = \beta \bar{X} = \beta / \gamma$ and $R_0 < 1$ if and only if $\beta < \gamma = 1/\bar{X}$.

For COVID-19, we will provide evidence that $\beta(t)$ is non-constant due to fluctuating containment measures and social distancing. Therefore this makes $\beta(t)$ of critical importance when assessing whether $R_0(t) < 1$.

S1.3 Algorithm for a discrete time SICD model

It is difficult to solve [S1] directly for an arbitrary $\gamma(t)$. Therefore, we take a discrete time approach [40] and describe an algorithm that takes both time t and infectious duration x as discrete intervals. This will allow the solution to be calculated iteratively. Denote I(t) as the number of infectious cases on day t and define

$$i(t,d) = I \int_{d-1}^{d} f_{X(t)}(x) \, dx, \qquad d = 1, 2, \dots, M_{t}$$

as the number of infectious cases at time t who have been infected for x = d days. Here 74 M is a preset number chosen large enough so that $i(t, M + 1) := I \int_{M}^{\infty} f_{X(t)}(x) dx$ can safely be assumed to equal zero. Let i(t, 0) be the number of newly infected cases. We 75 76 have $I(t) = \sum_{d=0}^{M} i(t, d)$. The removed cases will be counted separately for cure and death. 77 Number of daily deaths and cured cases on day t is denoted by \dot{D}_t and \dot{C}_t . The number 78 of cumulative deaths on day t is $D(t) := D(t-1) + \dot{D}_t$ and cumulative cured case on 79 day t is $C(t) := C(t-1) + C_t$. The removed cases are the sum of cured and dead cases: 80 R(t) = C(t) + D(t). For the discrete time model, we define the conditional cure and mortality 81 rate for infectious cases who have been infected for x = d days by 82

$$c_d = \frac{F_1(d) - F_1(d-1)}{\bar{F}(d-1)}$$
 and $m_d = \frac{F_2(d) - F_2(d-1)}{\bar{F}(d-1)}$ (S10)

which serves as the discrete time versions of $h_1(x)$ and $h_2(x)$. Similarly, define the discrete time pseudo-density functions $f_1(x)$ and $f_2(x)$ by 84

$$f_c(d) = F_1(d) - F_1(d-1)$$
 and $f_m(d) = F_2(d) - F_2(d-1)$. (S11)

The discrete time contact rate $\beta(t)$ is defined as $\beta_t = B(t) - B(t-1)$ where $B(t) = \int_0^t \beta(s) ds$.

On day t - 1, we have N = S(t - 1) + I(t - 1) + D(t - 1) + C(t - 1). Moving to day t, the I(t - 1) cases transmit disease to the susceptible cases with rate β_t . Consequently, number of newly infected cases is

$$S(t-1) - S(t) = i(t,0) = \beta_t \frac{I(t-1)S(t-1)}{N}$$

There are three possible outcomes for the I(t-1) infectious cases on day t: cured, dead, or infectious (status quo), with probabilities depending on infectious duration. This yields the following decomposition. First observe that $I(t-1) = \sum_{d=0}^{M-1} i(t-1,d)$. For i(t-1,d), the probability of cure is c_d , the probability of death is m_d and the probability of remaining infectious is $1-c_d-m_d$. The infectious cases, $i(t-1,d) \times (1-c_d-m_d)$, will be counted as i(t,d+1) on day t because their infectious duration increases one day, i.e. $i(t,d+1) = i(t-1,d)(1-c_d-m_d)$. The cured cases, $i(t-1,d)c_d$, and dead cases, $i(t-1,d)m_d$, are counted towards daily cured and dead cases on day t. That is,

$$\dot{C}_t = \sum_{d=0}^{M-1} i(t-1,d)c_d$$
, and $\dot{D}_t = \sum_{d=0}^{M-1} i(t-1,d)m_d$.

73

69

70

71

In total, we have

$$\begin{split} S(t) + I(t) + C(t) + D(t) \\ &= \left[S(t-1) - i(t,0)\right] + \left[\sum_{d=0}^{M} i(t,d)\right] + \left[C(t-1) + \dot{C}_{t}\right] + \left[D(t-1) + \dot{D}_{t}\right] \\ &= S(t-1) + \left[\sum_{d=1}^{M} i(t,d)\right] + \left[C(t-1) + \sum_{d=0}^{M-1} i(t-1,d)c_{d}\right] \\ &+ \left[D(t-1) + \sum_{d=0}^{M-1} i(t-1,d)m_{d}\right] \\ &= S(t-1) + C(t-1) + D(t-1) + \sum_{d=0}^{M-1} \left[i(t-1,d)(1-c_{d}-m_{d})\right] \\ &+ \sum_{d=0}^{M-1} i(t-1,d)c_{d} + \sum_{d=0}^{M-1} i(t-1,d)m_{d} \\ &= S(t-1) + C(t-1) + D(t-1) + \sum_{d=0}^{M-1} i(t-1,d) \\ &= S(t-1) + C(t-1) + D(t-1) + I(t-1) = N. \end{split}$$

To check that dS/dt + dI/dt + dR/dt = 0 holds,

$$\begin{split} \left[S(t) - S(t-1) \right] + \left[I(t) - I(t-1) \right] + \left[\dot{C}_t + \dot{D}_t \right] \\ &= \left[-i(t,0) \right] + \left[i(t,0) + \sum_{d=0}^{M-1} i(t-1,d) \left(1 - c_d - m_d \right) - \sum_{d=0}^{M-1} i(t-1,d) \right] \\ &+ \left[\sum_{d=0}^{M-1} i(t-1,d) c_d + \sum_{d=0}^{M-1} i(t-1,d) m_d \right] \\ &= 0. \end{split}$$

Algorithm 1 describes the discrete time algorithm for calculating $\{S(t), I(t), R(t), D(t), C(t): t = 1, \dots, T_{max}\}$ where T_{max} is maximum number of days under study.

Algorithm 1 Discrete Time Algorithm for SICD Model

1: Inputs: $\{N, D(0), C(0), \{\beta_t\}_1^{T_{\max}}, \{i(0,d)\}_1^M, \{c_d\}_1^M, \{m_d\}_1^M\}$ 2: Initialize: $I(0) = \sum_{d=0}^{M} i(0, d), R(0) = D(0) + C(0), S(0) = N - I(0) - R(0)$ 3: for t = 1 to T_{max} do $i(t,0) = \beta_t I(t-1)S(t-1)/N$ $\dot{D}_t = \sum_{v=1}^{M-1} i(t-1,v)m_v \text{ and } \dot{C}_t = \sum_{v=1}^{M-1} i(t-1,v)c_v$ for v = 0 to M - 1 do 4: 5: 6: $i(t, v + 1) = i(t - 1, v)(1 - c_v - m_v)$ 7: end for 8: end for $I(t) = \sum_{v=0}^{M} i(t,v), D(t) = D(0) + \sum_{s=1}^{t} \dot{D}_s \text{ and } C(t) = C(0) + \sum_{s=1}^{t} \dot{C}_s$ R(t) = D(t) + C(t) and S(t) = N - R(t) - I(t)9: 10: 11: **end for** 12: return { $S(t), I(t), i(t, d), R(t), D(t), C(t), \dot{C}(t), \dot{D}(t)$ } $_{1}^{T_{\text{max}}}$

S2 Specification of c_d and m_d

Recall from Corollary 1 that the classical SIR model assumes an exponential distribution for X ⁹¹ and constant hazards. Although the exponential distribution is widely used in survival analysis [41], in these applications the initial time is often recorded as the time point of hospitalization or diagnosis for a specific stage of disease development [42,43], rather than the beginning of disease development. However the hazard rate at the beginning of disease development such as COVID-19 is often very low with increasing values later in time which makes a constant hazard assumption inappropriate for such settings. ⁹⁷

S2.1 Lognormal distribution

98

Unlike the exponential distribution, the lognormal distribution [44, 45] can accomodate hazards that can first increase and then decrease over time [46]. Recall identity [S7] provides a method for specifying the CIF in terms of the hazard function of our chosing by specifying a random variable T_j with the target hazard. We use the lognormal distribution which corresponds to T_j that is assumed normally distributed under a log base-e transformation, 103

$$\ln T_j \sim \mathcal{N}(\mu_j, \sigma_j^2). \tag{S12}$$

Let $\phi_{\mu,\sigma}$ and $\Phi_{\mu,\sigma}$ denote the density and CDF for a N (μ, σ^2) random variable. By [S7] we have 104

$$F_{1}(x) = \int_{0}^{x} \mathbb{P}\{T_{2} \ge s\} d\mathbb{P}\{T_{1} \le s\}$$

$$= \int_{0}^{x} \mathbb{P}\{\ln T_{2} \ge \ln s\} d\mathbb{P}\{T_{1} \le s\}$$

$$= \int_{0}^{x} [1 - \Phi_{\mu_{2},\sigma_{2}}(\ln s)] d\mathbb{P}\{T_{1} \le s\}$$

$$= \int_{0}^{x} d\mathbb{P}\{T_{1} \le s\} - \int_{0}^{x} \Phi_{\mu_{2},\sigma_{2}}(\ln s) d\mathbb{P}\{T_{1} \le s\}$$

$$= \mathbb{P}\{\ln T_{1} \le \ln x\} - \int_{0}^{x} \Phi_{\mu_{2},\sigma_{2}}(\ln s) d\mathbb{P}\{\ln T_{1} \le \ln s\}$$

$$= \Phi_{\mu_{1},\sigma_{1}}(\ln x) - \int_{0}^{x} \Phi_{\mu_{2},\sigma_{2}}(\ln s) \frac{1}{s} \phi_{\mu_{1},\sigma_{1}}(\ln s) ds.$$

Similarly, we have $F_2(x) = \Phi_{\mu_2,\sigma_2}(\ln x) - \int_0^x \Phi_{\mu_1,\sigma_1}(\ln s) \frac{1}{s} \phi_{\mu_2,\sigma_2}(\ln s) ds$. Both F_1 and F_2 to the rapidly computed using standard software.

S2.2 Bimodal lognormal distribution

107

In a second approach we use a bimodal lognormal distribution [47]. This is done in consideration of two possibilities: (1) a subpopulation of infectious cases that are able to recover in a shorter period with low mortality rate; and (2) a subpopulation of infectious cases whose medical situation deteriorates requiring hospitalization care such that after treatment they are either cured or have relatively high mortality rate. Subpopulation (1) can reflect asymptomatic carriers [48–50] and/or carriers involving mutations [51, 52] and/or carriers of viruses with specific lineage [53, 54]. In order to model the lognormal bimodal distribution, T_i is assumed to satisfy

$$\ln T_j \sim p \mathbf{N}(\mu_{j1}, \sigma_{j1}^2) + (1 - p) \mathbf{N}(\mu_{j2}, \sigma_{j2}^2).$$
(S13)

By [S7] we have

$$\begin{split} F_{1}(x) &= \int_{0}^{x} \mathbb{P}\{T_{2} \geq s\} d\mathbb{P}\{T_{1} \leq s\} \\ &= \int_{0}^{x} \mathbb{P}\{\ln T_{2} \geq \ln s\} d\mathbb{P}\{T_{1} \leq s\} \\ &= \int_{0}^{x} \mathbb{P}\{\ln T_{2} \geq \ln s\} d\mathbb{P}\{T_{1} \leq s\} \\ &= \int_{0}^{x} \left[1 - p\Phi_{\mu_{21},\sigma_{21}}(\ln s) - (1 - p)\Phi_{\mu_{22},\sigma_{22}}(\ln s)\right] d\mathbb{P}\{T_{1} \leq s\} \\ &= \int_{0}^{x} d\mathbb{P}\{\ln T_{1} \leq \ln s\} - \int_{0}^{x} \Phi_{\mu_{22},\sigma_{22}}(\ln s) d\mathbb{P}\{\ln T_{1} \leq \ln s\} \\ &+ p\int_{0}^{x} \left[\Phi_{\mu_{22},\sigma_{22}}(\ln s) - \Phi_{\mu_{21},\sigma_{21}}(\ln s)\right] d\mathbb{P}\{\ln T_{1} \leq \ln s\} \\ &= p\Phi_{\mu_{11},\sigma_{11}}(\ln x) + (1 - p)\Phi_{\mu_{12},\sigma_{12}}(\ln x) \\ &- \int_{0}^{x} \Phi_{\mu_{22},\sigma_{22}}(\ln s) \frac{1}{s} \left[p\phi_{\mu_{11},\sigma_{11}}(\ln s) + (1 - p)\phi_{\mu_{12},\sigma_{12}}(\ln s)\right] ds \\ &+ p\int_{0}^{x} \left[\Phi_{\mu_{22},\sigma_{22}}(\ln x) - \Phi_{\mu_{21},\sigma_{21}}(\ln x)\right] \frac{1}{s} \left[p\phi_{\mu_{11},\sigma_{11}}(\ln s) + (1 - p)\phi_{\mu_{12},\sigma_{12}}(\ln s)\right] ds. \end{split}$$
Similarly, we have

Similarly, we have

 $F_2(x)$

$$\begin{split} &= p \, \Phi_{\mu_{21},\sigma_{21}}(\ln x) + (1-p) \Phi_{\mu_{22},\sigma_{22}}(\ln x) \\ &\quad - \int_0^x \Phi_{\mu_{12},\sigma_{12}}(\ln x) \, \frac{1}{s} \left[p \phi_{\mu_{21},\sigma_{21}}(\ln x) + (1-p) \phi_{\mu_{22},\sigma_{22}}(\ln s) \right] ds \\ &\quad + p \int_0^x \left[\Phi_{\mu_{12},\sigma_{12}}(\ln s) - \Phi_{\mu_{11},\sigma_{11}}(\ln s) \right] \frac{1}{s} \left[p \phi_{\mu_{21},\sigma_{21}}(\ln s) + (1-p) \phi_{\mu_{22},\sigma_{22}}(\ln s) \right] ds. \end{split}$$

When p = 1, the above equations simplify to the unimodal case considered previously.

Comparison of three survival models S2.3

We investigate daily infected and deaths calculated under three survival model scenarios:

- 1. Exponential model (Scenario I). In this scenario, we use the classical SIR model of 120 Corollary 1 with $\lambda_1 = 0.032$, $\lambda_2 = 2.93 \times 10^{-3}$ and $\gamma = \lambda_1 + \lambda_2 = 0.034$. 121
- 2. Lognormal model (Scenario II). We use a lognormal as in [S12] with $\mu_1 = 3.506$, $\sigma_1 =$ 122 0.51, $\mu_2 = 3.8$ and $\sigma_2 = 0.91$; 123
- 3. Bimodal lognormal model (Scenario III). We use a bimodal lognormal distribution as 124 in [S13] with p = 0.3, $\mu_{11} = 1.908$, $\sigma_{11} = 0.4$, $\mu_{12} = 3.968$, $\sigma_{12} = 0.5$, $\mu_{21} = \mu_{22} = 0.5$ 125 3.8 and $\sigma_{21} = \sigma_{22} = 0.91$. 126

For comparison, we adjust m_d and c_d for scenarios II and III so their mortality rates, M_{death} , 127 and mean infectious periods, X, are the same as those in scenario I. The mortality rate was 8.5% 128 and mean infectious time was X = 29 days. For scenarios II and III, we first calculate $F_1(x)$ 129 and $F_2(x)$ and then adjust them by 130

$$F_1(x) \leftarrow \frac{F_1(x) \times (1 - M_{\text{death}})}{F_1(T_{\text{max}})} \text{ and } F_2(x) \leftarrow \frac{F_2(x) \times M_{\text{death}}}{F_2(T_{\text{max}})},$$
(S14)

117

118

where T_{max} was set to 400. For the three scenarios, $F_1(x)$, $F_2(x)$ and F(x) are displayed in Fig S1. Discrete time values for f_c and f_m using [S11] are given in Fig S2A,B and discrete time values $\{c_d, m_d\}$ using equation [S10] are shown in Fig S2C,D. In the next section, we compare how the three survival models perform in modeling U.S. COVID-19 data.

S3 SICD model applied to pre-vaccination data

The three survival models were fit to COVID-19 New York Times data using Algorithm 1. ¹³⁶ Population size was set to N = 325,222,000 equal to the sum of populations for the states and ¹³⁷ regions reported by the New York Times. Values were initialized using using i(0,0) = 1, and ¹³⁸ $D(0) = C(0) = i(0,1) = i(0,2) = \cdots = i(0,M) = 0$. Values for $\{c_d, m_d\}_1^M$ were initialized ¹³⁹ according to the survival model used. ¹⁴⁰

S3.1 Constant contact rate

141

135

As a preliminary step to understand the behavior of models we started with a simplified analysis 142 that assumed a constant contact rate $\beta(t) = \beta_t = \beta = 0.2$. The mortality rate and mean 143 infectious times were set to previous values $M_{\text{death}} = 8.5\%$ and X = 29. Because all three 144 models have the same infectious period, they have the same basic reproduction number $R_0 =$ 145 $\beta \bar{X} = 0.2 \times 29 = 5.8$. Results are shown in Figs. S3 and S4. In all three scenarios, nearly the 146 entire population is infected within 300 days with 8.5% of infected dead. However, the outbreak 147 ends faster under II than scenarios I and III (Fig S4). Maximum number of daily infected cases 148 peaks differently among the three scenarios. Due to a constant contact rate, infected cases 149 Fig S4D are mainly driven by the distribution of cure time (specified in Fig S2A,C). Within 150 the first 20 days, scenario II assumes the lowest cure rate, therefore its peak of daily infectious 151 cases is the highest among all scenarios. Daily deaths displayed as percentage of population 152 are given in Fig S4B. The dynamics of daily death are driven by the survival specifications 153 of death in Fig S2B,D. Because scenario II has the highest peak, this leads to the highest 154 peak for daily death. Scenario I is the smallest, therefore it has the lowest peak in Fig S4B. 155 Fig S4C displays aCDR, defined as cumulative deaths, D(t), divided by cumulative infected 156 cases, D(t) + I(t) + C(t) = N - S(t). Values of aCDR should be very low at onset of disease 157 due to few individual being cured or dying immediately after infection. Scenario I (exponential) 158 does not conform to this and is therefore unrealistic. 159

S3.2 Data-driven time varying contact rate

A constant β_t is too simplistic for realistic modeling. This is because β_t is heavily influenced by lockdown measures and social distancing norms that change over time. Hence we apply the SICD model using a data driven β_t rate. Recall that β_t equals $[i(t, 0)/I(t-1)] \times [N/S(t-1)]$, where i(t, 0) equals newly infected cases on day t. Because it is not easy to directly estimate this value, some form of approximation is necessary. The technique we use is to approximate I(t)by the number infected cases reported within \bar{X} days, since cases reported before \bar{X} days are expected to be either cured or dead. Denote the number of daily new infected cases on record by I_t^{new} . We use the following data driven contact rate:

$$\beta_t = \frac{I_t^{\text{new}}}{\sum_{(s=t-\bar{X})}^t I_s^{\text{new}}}.$$

Values for β_t are displayed in Fig 2A. Fig S5 displays results from applying the discrete time algorithm using the data driven contact rate (all other parameter settings were the same as before). If Scenarios I and III clearly underestimate reported daily infected cases, whereas scenario II estimates these values highly accurately. However all three methods perform poorly in estimating daily reported deaths: Scenarios I and III underestimate values, whereas II overestimates values. If

The reason for the poor performance of I and III in estimating daily infections is that both 166 assume a much faster recovery rate than II. Scenario II resolves this issue but as pointed out 167 it still overestimates daily reported deaths. This suggested to us that a decrease in mortality 168 rate must have occurred at some point in time, most likely after easing of lockdown measures. 169 To test this, we set the mortality rate to $M_{\text{death}} = 1.7\%$ for the second wave defined as the 170 time period of May 9 through August 27. A value of 1.7% was also used for subsequent waves 171 and data. One reason for selecting this particular time period was suggested by the behavior 172 of the estimated contact rate of Fig 2A which displayed a wave like pattern over this time. To 173 further investigate this, we estimated the basic reproduction number $R_0(t)$. Its values were 174 estimated using discrete integral calculus using previous values for β_t , $f_m(d)$ and $f_c(d)$ for 175 $t, d = 0, 1, \ldots, T_{\text{max}}$ and where a mortality rate of 1.7% was used for data following first wave. 176 Note that for recent dates, such as $R_0(t)$ on February 2nd in 2021, we have to provide β_s with 177 $s \in [t, t + M]$ to estimate $R_0(t)$, for which we assume the existing wave pattern after May9th 178 is repeated cyclically. Estimated $R_0(t)$ is given in Fig S6A. Notice that all three models have 179 $R_0(t)$ values that begin roughly at the value of 1 at the start of second wave, and then increase 180 and decrease and return to the value 1 in one full cycle over this time period. It is for this reason 181 we refer to this period as the second wave. A similar pattern for $R_0(t)$ is observed for a third 182 wave. We also note that values for $R_0(t)$ in Fig S6A are comparable to other studies. The R_0 for 183 COVID-19 has been estimated previously at 1.3–6.5 with an approximate average of 3.3 [55, 56]. 184

Fig 3F shows scenario II under the reduced mortality 1.7% for post first-wave data now fits 185 observed values of aCDR, daily infected and deaths over the entire range of data. However, 186 scenario I (Fig 3A) and scenario III (Fig S6C) still poorly approximate observed values. Thus 187 there appears to be fundamental problems in applying these two models to COVID-19 data. 188 Problems with these models are also evident from $R_0(t)$ of Fig S6A. The value of $R_0(t)$ is high 189 in the first 70 days of the outbreak under all scenarios, which is realistic and expected, however 190 $R_0(t)$ is much smaller for scenarios I and III compared with II. It is also worth noting that even 191 though I and III have very similar $R_0(t)$ profiles, their estimated values for infected cases and 192 deaths are quite different in Fig S6B. We mention that scenario III was considered under many 193 different parameter settings. We found that even after trying different parameters, scenario III 194 performed poorly unless the two modes for the cure event were very close. Thus we believe the 195 assumption of bimodality is not justified for COVID-19. We conclude there is weak evidence 196 supporting a bimodal distributed cure time where one subpopulation has quicker recovery time. 197

S4 Susceptible Infectious Vaccinated Cure Death Immune (SIVCDI) model for 2021 Vaccination Data

We extend the SICD model to include a vaccination compartment as follows:

199

198

$$\frac{dS^{\upsilon}}{dt} = -\alpha(t)S^{\upsilon} - \frac{\beta^{\upsilon}(t)IS^{\upsilon}}{N}
\frac{dS^{\upsilon}}{dt} = \alpha(t)S^{\upsilon} - \frac{\beta^{\upsilon}(t)IS^{\upsilon}}{N} - \eta(t)S^{\upsilon}
\frac{dI^{\upsilon}}{dt} = \frac{\beta^{\upsilon}(t)IS^{\upsilon}}{N} - \gamma^{\upsilon}(t)I^{\upsilon}
\frac{dI^{\upsilon}}{dt} = \frac{\beta^{\upsilon}(t)IS^{\upsilon}}{N} - \gamma^{\upsilon}(t)I^{\upsilon}
\frac{dR}{dt} = \gamma^{\upsilon}(t)I^{\upsilon} + \gamma^{\upsilon}(t)I^{\upsilon} + \eta(t)S^{\upsilon}.$$
(S15)

Here the unvaccinated susceptible cases are denoted by S^{U} , the vaccinated susceptible cases 201 are denoted by S^{V} , with $S = S^{U} + S^{V}$ as their sum, and likewise where unvaccinated infectious 202 cases are denoted as I^{U} , vaccinated infectious are denoted as I^{V} , with $I = I^{U} + I^{V}$ as their 203

sum. The function $\alpha(t)$ is the vaccination rate at time t, β^{U} is the effective contact rate for 204 unvaccinated cases at time t, equal to average number of contacts per person per time multiplied 205 by probability of disease transmission between a unvaccinated susceptible and infectious case 206 at time t, β^{v} is the contact rate between a vaccinated susceptible case and infectious case at 207 time t, $\gamma^{U}(t)$ denotes the removal rate for unvaccinated infectious cases at time t, $\gamma^{V}(t)$ is the 208 removal rate for the vaccinated infectious cases and $\eta(t)$ is the immune rate equal to percentage 209 of vaccinated individuals who become immune to the disease. The sample size N is fixed and 210 the above five equations can be reduced to four using $N = S^U + S^V + I + R$. 211

Because [S15] is an extension to include vaccination and immunity we refer to this as the Susceptible Infectious Vaccinated Cure Death Immune (SIVCDI) model. Previously for the SICD model, we used X as the continuous event time of an infected individual who either recovers from infection or dies due to infection. With the SIVCDI model, X becomes X_U and we add a new continuous variable X_V , defined as the event time for an infected vaccinated individual who either becomes cured or dies. Related to X_V is is another new variable E_V , defined as the event time for a vaccinated individual who becomes immune. We denote its density by $f_{E_V}(x)$ and its CDF by $F_{E_V}(x) = \mathbb{P}\{E_V \leq x\}$. Additionally, define $E_V(t)$ to be the length of time a vaccinated individual has been vaccinated at time t. Denote its density by $f_{E_V(t)}(x)$ where $\int_0^\infty f_{E_V(t)}(x) dx = 1$. Using a similar argument as Theorem 1, we have

$$\eta(t) = \int_0^\infty \frac{f_{E_V}(x)}{1 - F_{E_V}(x)} f_{E_V(t)}(x) \, dx.$$

Similar to \overline{X} of Theorem 3, define the mean immunity period as $\overline{E}_V = \int_0^\infty [1 - F_{E_V}(x)] dx$ which equals the average number of days a vaccinated individual who becomes immune requires to develop immunity. The parameter \overline{E}_V can be influenced by brand of vaccine and timing of follow-up dose(s).

S4.1 Algorithm for a discrete time SIVCDI Model

216

Define $v(t, d') = S^{V} \int_{d'-1}^{d'} f_{E_{V}(t)}(x) dx, d' = 1, 2, ..., M$, as the number of vaccinated cases 217 at time t who have been vaccinated for x = d' days. As in section S1.3, M is a preset number 218 chosen large enough so that $v(t, M+1) := S^{V} \int_{M}^{\infty} f_{E_{V}(t)}(x) dx$ can safely be assumed to equal 219 zero. Let v(t, 0) be the number of newly vaccinated cases. We have $S^{V}(t) = \sum_{d'=0}^{M} v(t, d')$. 220

For the discrete time model, we define the conditional immunity rate for vaccinated cases who have been vaccinated for x = d' days by 222

$$e_{d'} = \frac{F_{E_V}(d') - F_{E_V}(d'-1)}{1 - F_{E_V}(d'-1)}$$
(S16)

The cumulative number of cases who are vaccinated immune at day t is

$$\dot{E}(t) = \sum_{d'=0}^{M-1} v(t-1, d') e_{d'}$$

The number of vaccinated cases who become immune at day t is $E(t) = E(t-1) + \dot{E}(t)$. The removed cases will be counted separately for cure, death and additionally, vaccinated immunity: R(t) = C(t) + D(t) + E(t).

Number of infectious cases at time t who have been infected for x = d days, i(t, d), described previously are now separated into $i^{U}(t, d)$ and $i^{V}(t, d)$ for unvaccinated and vaccinated infectious cases on day t with infected duration d, respectively. We also use separate conditional cure rates, c_d^{U} and c_d^{V} , and conditional death rates, m_d^{U} and m_d^{V} , for unvaccinated and vaccinated infectious cases. The update from i(t - 1, d) to i(t, d + 1) can be used for updating $i^{U}(t, d)$ and $i^{V}(t, d)$. Similar to i(t, d), values v(t, d') are calculated iteratively. The number of newly vaccinated cases is

$$v(t,0) = \alpha_t S^{U}(t) = V_t^{\text{new}},$$

where α_t is the discrete time version of $\alpha(t)$. Because α_t is usually not available, we use newly vaccinated cases from public data to estimate this, this being denoted as V_t^{new} . For v(t-1, d'), the probability of immunity is $e_{d'}$ and the probability of remaining vaccinated is $1 - e_{d'}$. The vaccinated cases, $v(t-1, d') \times (1 - e_{d'})$, will be counted as v(t, d'+1) on day t because their vaccinated duration increases one day, i.e. $v(t, d'+1) = v(t-1, d')(1 - e_{d'})$.

Algorithm 2 describes the discrete time algorithm for calculating

$$\{S^{U}(t), S^{V}(t), I(t), R(t), D(t), C(t), E(t) : t = 1, \dots, T_{\max}\}$$

where as before T_{\max} is maximum number of days under study.

231

Algorithm 2 Discrete Time Algorithm for the SIVCDI Model				
1: Inputs:				
$\{N, S^{\scriptscriptstyle U}(0), S^{\scriptscriptstyle V}(0), E(0), D(0), C(0), \{v(0,d)\}_1^M, \{i^{\scriptscriptstyle U}(0,d)\}_1^M, \{i^{\scriptscriptstyle V}(0,d)\}_1^M, \{i^{$				
$\{V_t^{\text{new}}\}_1^{T_{\text{max}}}, \{\beta_t^{\scriptscriptstyle U}\}_1^{T_{\text{max}}}, \{\beta_t^{\scriptscriptstyle V}\}_1^{T_{\text{max}}}, \{c_d^{\scriptscriptstyle U}\}_1^M, \{m_d^{\scriptscriptstyle U}\}_1^M, \{c_d^{\scriptscriptstyle V}\}_1^M, \{m_d^{\scriptscriptstyle V}\}_1^M, \{e_{d'}\}_1^M\}$				
2: Initialize:				
$I^{\scriptscriptstyle U}(0) = \sum_{d=0}^{\scriptscriptstyle M} i^{\scriptscriptstyle U}(0,d), I^{\scriptscriptstyle V}(0) = \sum_{d=0}^{\scriptscriptstyle M} i^{\scriptscriptstyle V}(0,d),$				
$I(0) = I^{U}(0) + I^{V}(0), R(0) = D(0) + C(0) + E(0),$				
$S^{\nu}(0) = N - S^{\nu}(0) - I(0) - R(0)$				
3: for $t = 1$ to T_{max} do				
4: $v(t,0) = V_t^{\text{new}} \text{ and } \dot{E}_t = \sum_{d'=1}^{M-1} v(t-1,d') e_{d'}$				
5: $i^{\scriptscriptstyle U}(t,0) = \beta^{\scriptscriptstyle U}_t I(t-1) S^{\scriptscriptstyle U}(t-1) / N \text{ and } i^{\scriptscriptstyle V}(t,0) = \beta^{\scriptscriptstyle V}_t I(t-1) S^{\scriptscriptstyle V}(t-1) / N$				
6: $\dot{D}_t = \sum_{d=1}^{M-1} i^U (t-1,d) m_d^U + \sum_{d=1}^{M-1} i^V (t-1,d) m_d^V$				
7: $\dot{C}_t = \sum_{d=1}^{M-1} i^U(t-1,d)c_d^U + \sum_{d=1}^{M-1} i^V(t-1,d)c_d^V$				
8: for $w = 0$ to $M - 1$ do				
9: $v(t, w+1) = v(t-1, w)(1-e_w)$				
10: $i^{U}(t, w+1) = i^{U}(t-1, w) \left(1 - c_{w}^{U} - m_{w}^{U}\right)$				
11: $i^{V}(t, w+1) = i^{V}(t-1, w) \left(1 - c_{w}^{V} - m_{w}^{V}\right)$				
12: end for				
13: $S^{V}(t) = \sum_{d'=0}^{M} v(t, d'), E(t) = E(0) + \sum_{s=1}^{t} E_{s}$				
14: $I^{U}(t) = \sum_{d=0}^{M} i^{U}(t,d), I^{V}(t) = \sum_{d=0}^{M} i^{V}(t,d), I(t) = I^{U}(t) + I^{V}(t),$				
15: $D(t) = D(0) + \sum_{s=1}^{t} \dot{D}_s \text{ and } C(t) = C(0) + \sum_{s=1}^{t} \dot{C}_s$				
16: $R(t) = D(t) + C(t) + E(t)$ and $S^{U}(t) = N - S^{V}(t) - I(t) - R(t)$				
17: end for				
18: return { $S^{U}(t), S^{V}(t), v(t, d'), I(t), i^{U}(t, d), i^{V}(t, d), R(t), D(t), C(t), E(t)$ } $_{1}^{T_{\text{max}}}$				

S4.2 Specification of β_t^U , β_t^V and $e_{d'}$

We use published vaccine studies to estimate β_t^U and β_t^V . Let a% and b% be percentages of infected case in the vaccine and control group, respectively. We can assume $\beta_t^V/\beta_t^U = a/b$. The contact rate β_t , is a weighted average of β_t^U and β_t^V ,

$$\frac{S^{U}(t-1)}{S^{U}(t-1)+S^{V}(t-1)}\beta_{t}^{U}+\frac{S^{V}(t-1)}{S^{U}(t-1)+S^{V}(t-1)}\beta_{t}^{V}=\beta_{t},$$

We calculate β_t as in the SICD model and by updating $S^U(t-1)$ and $S^V(t-1)$ iteratively we obtain data driven β_t^U and β_t^V . A recent vaccine cohort study [57] found an incidence rate of 4.7 vs 149.8 per 100,000 person-days for vaccinated to unvaccinated for symptomatic SARS-CoV-2. The study also reported an incidence rate of 11.3 vs 67.0 per 100,000 person-days for asymptomatic infection. Thus we obtain the ratio of percentages of infected cases for vaccinated group and control group as a/b = (4.7 + 11.3)/(149.8 + 67).

For the immune rate $e_{d'}$, we assume an exponential function $F(x) = 1 - e^{-\zeta x}$. The mean 239 expected time for exponential distribution is $\overline{E}_V = 1/\zeta$, so ζ is identifiable and estimatable. We 240 assume the mean immunity period is $\overline{E}_V = 30$ days, thus yielding $e_{d'} = e^{-1/30} - 1 = 0.0339$. 241 For the current data, our results were not particularly sensitive to \overline{E}_V . We obtained V_t^{new} from 242 publicly available data [58]. As has been widely observed, mortality rate for vaccinated is near 243 zero, thus we set the death rate for this group to $M_{\rm death} = 0.001\%$. Based on our what-if 244 analysis we use a reduced cure time of 25 days. All other parameters including parameters for 245 the unvaccinated infectous cases were set as before for the pre-vaccination analysis. The results 246 are shown in Fig 6 and show a near perfect fit. 247

Scenario III: bimodal lognormal survival model

Fig S1. Comparison of three different survival models where all models have identical mean infectious period $\bar{X} = 29$ and mortality rate $M_{\text{death}} = 8.5\%$. Shown are CCDF $\bar{F}(t)$ (black), CIF for cure $F_1(t)$ (orange) and CIF for death $F_2(t)$ (green). Scenario I uses an exponential distribution, which is equivalent to the classical SIR model by Corollary 1. Scenario II uses a lognormal distribution.

Fig S2. Discrete time survival values for scenario I (red), II (blue) and III (purple). (A) Discrete time pseudo-densities for cure. Most infections recover at the beginning in scenario I; around 15-40 days in scenario II; and either within 17 days, or around 25 to 55 days, in scenario III. (B) Discrete time pseudo-densities for death. Most deaths occur at the beginning in scenario I and around 15-40 days in scenarios II and III. (C) Discrete time hazard rates for cure. Scenario I has constant hazard whereas scenarios II and III assume hazards that initially increase and then decrease. Scenario III assumes a bimodal shape for the cure hazard. (D) Discrete time hazard rates for death.

Scenario II: lognormal survival model

Scenario III: bimodal lognormal survival model

Fig S3. Discrete time SIR models assuming a constant contact rate $\beta(t) = 0.2$. Infectious cases I(t) (black), daily cured cases $\dot{C}(t)$ (orange) and daily deaths $\dot{D}(t)$ (green) are displayed as percentage of total population. Daily cured and deaths being much smaller than I(t) are multiplied by 30 and 200. In scenario I, all values have the same trend and peak at the same time. In scenario II, daily deaths peak after infectious cases, which is more realistic. In scenario III, deaths also peak after infectious cases, but daily cured has two waves due to the bimodal distribution assumption.

Fig S4. Comparison of discrete time SIR models assuming a constant contact rate $\beta(t) = 0.2$. (A) Daily cured. (B) Daily deaths. (C) aCDR. (D) Infectious cases as percentage of population, I(t)/N. Values of aCDR should be very low at onset of disease due to few cures and death occuring immediately after infection. Therefore, scenario I is unrealistic.

Scenario I: exponential survival model

Scenario II: lognormal survival model

Scenario III: bimodal lognormal survival model

Fig S5. Analysis of COVID-19 pre-vaccination data assuming a constant mortality rate for first and subsequent waves. Scenario II is best at estimating daily new cases. However, aCDR and daily deaths are overestimated after first wave, thus suggesting a lower mortality for post-first wave data.

Fig S6. Analysis of COVID-19 pre-vaccination data assuming a lower mortality rate for second and subsequent waves. (A) Basic reproduction number $R_0(t)$; note its values are much smaller for Scenarios I and III than II. (B) Even though scenarios I and III have similar $R_0(t)$ profiles, estimated values for daily new infections and deaths are different. (C) Bimodal lognormal distribution continues to perform poorly even under assumption of lower mortality for post-first wave data.

References

32.	Hethcote HW. The mathematics of infectious diseases. SIAM review. 2000;42(4):599–653.	249 250
33.	Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character. 1927;115(772):700–721.	251 252 253
34.	Anderson RM, Anderson B, May RM. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press; 1992.	254 255
35.	Diekmann O, Heesterbeek J. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis, and Interpretation. John Wiley and Sons, Inc., New York; 2000.	256 257
36.	Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science. 2009;324(5934):1557–1561.	258 259 260
37.	Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the basic reproduction number (R0). Emerging Infectious Diseases. 2019;25(1):1.	261 262
38.	Guerra FM, Bolotin S, Lim G, Heffernan J, Deeks SL, Li Y, et al. The basic reproduction number (R0) of measles: a systematic review. The Lancet Infectious Diseases. 2017;17(12):e420–e428.	263 264 265
39.	Royston P, Parmar MK. Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Medical Research Methodology. 2013;13(1):152.	266 267 268
40.	Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLOS One. 2020;15(3):e0230405.	269 270
41.	Glasser M. Exponential survival with covariance. Journal of the American Statistical Association. 1967;62(318):561–568.	271 272
42.	Crowley J, Hu M. Covariance analysis of heart transplant survival data. Journal of the American Statistical Association. 1977;72(357):27–36.	273 274
43.	Collett D. Modelling Survival Data in Medical Research. CRC press; 2015.	275
44.	Chapman J, O'callaghan C, Hu N, Ding K, Yothers G, Catalano P, et al. Innovative estimation of survival using log-normal survival modelling on ACCENT database. British Journal of Cancer. 2013;108(4):784–790.	276 277 278
45.	Royston P. The lognormal distribution as a model for survival time in cancer, with an emphasis on prognostic factors. Statistica Neerlandica. 2001;55(1):89–104.	279 280
46.	Aragao GM, Corradini MG, Normand MD, Peleg M. Evaluation of the Weibull and log normal distribution functions as survival models of Escherichia coli under isothermal and non isothermal conditions. International Journal of Food Microbiology. 2007;119(3):243–257.	281 282 283 284
47.	Fischer A, Abel A, Lepper M, Zitzelsberger A, Von Glasow A. Modeling bimodal electromigration failure distributions. Microelectronics Reliability. 2001;41(3):445–453.	285 286
48.	Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323(14):1406–1407.	287 288

9. Gandhi M, Yokoe DS, Havlir DV. Asymptomatic transmission, the Achilles heel of current strategies to control COVID-19; 2020.	289 290
 Treibel TA, Manisty C, Burton M, McKnight Á, Lambourne J, Augusto JB, et al. COVID- 19: PCR screening of asymptomatic health-care workers at London hospital. The Lancet. 2020;395(10237):1608–1610. 	291 292 293
1. Grubaugh ND, Hanage WP, Rasmussen AL. Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear. Cell. 2020;.	294 295
 Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, et al. Emerging SARS- CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. Journal of Translational Medicine. 2020;18:1–9. 	296 297 298
3. Tang X, Wu C, Li X, Song Y, Yao X, Wu X, et al. On the origin and continuing evolution of SARS-CoV-2. National Science Review. 2020;.	299 300
4. Koutsakos M, Kedzierska K. A race to determine what drives COVID-19 severity; 2020.	301
 Sen-Crowe B, McKenney M, Elkbuli A. Social distancing during the COVID-19 pan- demic: Staying home save lives. The American Journal of Emergency Medicine. 2020;. 	302 303
6. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel Medicine. 2020;.	304 305
 Angel Y, Spitzer A, Henig O, Saiag E, Sprecher E, Padova H, et al. Association Between Vaccination With BNT162b2 and Incidence of Symptomatic and Asymptomatic SARS- CoV-2 Infections Among Health Care Workers. JAMA. 2021;. 	306 307 308
8. Hannah R, Esteban OO, Diana B, Edouard M, Joe H, Bobbie M, et al. Coronavirus Pandemic (COVID-19). Our World in Data. 2020;.	309 310