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S1 Susceptible Infectious Cure Death (SICD) model 1

We generalize the classical SIR model [32] via the following set of ordinary differential equations: 2

dS

dt
= −β(t)IS

N
dI

dt
=

β(t)IS

N
− γ(t)I

dR

dt
= γ(t)I,

(S1)

where S is number of susceptible, I is number of infected, R is number of removed (either died 3

or recovered), N = S + I +R is the total population which is assumed to be fixed, β(t) is the 4

contact rate at time t, equal to average number of contacts per person per time multiplied by 5

probability of disease transmission between a susceptible and infectious case at time t, and γ(t) 6

denotes the removal rate at time t. In the classical SIR model, β(t) and γ(t) are assumed to be 7

constants, β(t) = β and γ(t) = γ [32–35]. 8

We extend [S1] to incorporate flexible survival models for length of infectious time. We 9

refer to this as the Susceptible Infectious Cure Death (SICD) model. Let X be the continuous 10

event time of an infected individual who either recovers from infection or dies due to infection. 11

Let δ ∈ {1, 2} be the indicator recording which event occurs: δ = 1 denotes cure (recovery); 12

δ = 2 denotes death. Let Fj(x) = P{X ≤ x, δ = j} be the cumulative incidence function (CIF) 13

defined as the probability of experiencing the event j = 1, 2 by time x. The CIF is related to the 14

complementary cumulative distribution function (CCDF) F̄ (x) = P{X ≥ x} by the identity 15

F̄ (x) = 1− P{X ≤ x}
= 1− [P{X ≤ x, δ = 1}+ P{X ≤ x, δ = 2}]
= 1− F1(x)− F2(x).

Observe that x refers to the time passed in an infectious period for an infected case, not the time 16

t passed since an epidemic outbreak. 17

An important quantity is the cause-specifc hazard function. The cause-specific hazard h1 for
cure and h2 for death are

hj(x) = lim
∆↓0

{
P{x−∆ ≤ X ≤ x+∆, δ = j|X ≥ x}

∆

}
=

fj(x)

F̄ (x)
, j = 1, 2
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where fj(x) = dFj(x)/dx is the pseudo-density function where f1+f2 = f and f is the density 18

of X . The following result characterizes the removal rate γ(t) in terms of the cause-specific 19

hazard functions. 20

Theorem 1. Let X(t) ∈ [0,∞) be the length of time an individual has been infected at time t 21

and denote its probability density function by fX(t)(x) where
∫∞
0

fX(t)(x)dx = 1. Then 22

γ(t) =

∫ ∞

0

[
h1(x) + h2(x)

]
fX(t)(x) dx. (S2)

Proof. The number of newly removed cases at time t equals 23

dR

dt
= I · lim

∆↓0

{
P{X(t)−∆ ≤ X ≤ X(t) + ∆}

∆

}
= I · lim

∆↓0

{
∆−1

∫ ∞

0

P
{
x−∆ ≤ X ≤ x−∆|X(t) = x

}
fX(t)(x) dx

}
= I · lim

∆↓0

{
∆−1

∫ ∞

0

P
{
x−∆ ≤ X ≤ x−∆|X ≥ x

}
fX(t)(x) dx

}
= I ·

∫ ∞

0

f(x)

F̄ (x)
fX(t)(x) dx

= I ·
∫ ∞

0

f1(x) + f2(x)

F̄ (x)
fX(t)(x) dx.

Comparing this with dR/dt = Iγ(t) in [S1] establishes [S2] as hj = fj/F̄ by definition. 24

Corollary 1. If the cause-specific incidence functions are specified exponentially by 25

F1(x) =
λ1

γ
(1− e−γx) and F2(x) =

λ2

γ
(1− e−γx), (S3)

where λ1 + λ2 = γ, then X is exponentially distributed with mean 1/γ and the cause-specific 26

hazards are constants λ1 and λ2 and γ(t) = γ. 27

Proof. By [S3], the pseudo-density functions are

f1(x) =
dF1(x)

dx
= λ1e

−γx and f2(x) =
dF2(x)

dx
= λ2e

−γx.

Because λ1 + λ2 = γ,

F̄ (x) = 1− F1(x)− F2(x) = 1− λ1 + λ2

γ
(1− e−γx) = e−γx.

Therefore X is exponentially distributed with mean 1/γ. Further, the cause-specific hazards are

h1(x) =
f1(x)

F̄ (x)
= λ1 and h2(x) =

f2(x)

F̄ (x)
= λ2.

Hence by Theorem 1, γ(t) =
∫∞
0

[λ1 + λ2]fX(t)(x) dx = γ
∫∞
0

fX(t)(x) dx = γ. 28

Corollary 1 shows that the classical SIR model assumes an exponential distribution for X 29

and constant cause-specific hazards. This has many implications: in particular the assumption of 30

a fixed constant hazard process for cure and death will not be flexible enough for COVID-19 31

modeling. The exponential assumption also forces the value of mortality to a specific value. 32

Definition 1. Define the mortality rate of the disease, denoted by Mdeath, as the limit of the CIF 33

for the cause-specific death event: Mdeath = limx→∞ F2(x). 34
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Thus under the classical SIR model, the mortality rate is a fixed ratio of the death and cure 35

rates specified by: 36

Mdeath = lim
x→∞

F2(x) = lim
x→∞

λ2

γ
(1− e−γx) =

λ2

λ1 + λ2
. (S4)

Theorem 1 allows us to utilize flexible survival models for γ(t) using hazard functions
that are more realistic than the exponential. Section S1.1 formalizes how this is accomplished
through a competing risk formulation. We note that although it is almost impossible to identify
fX(t)(x) in a closed format, which is required in the specification of γ(t) and dR/dt = Iγ(t),
we introduce a discrete time algorithm to compute I · fX(t)(x) numerically in Section 1S1.3.
The key step is to count cure and death separately when calculating removed cases, which holds
by Theorem 1 due to

dR

dt
= I

∫ ∞

0

[
h1(x)+h2(x)

]
fX(t)(x) dx = I

∫ ∞

0

h1(x)fX(t)(x) dx+I

∫ ∞

0

h2(x)fX(t)(x) dx.

Although this type of numerical solution will not provide analytical results for equilibrium 37

stability and asymptotic behavior analysis, it is well suited for modeling discrete time data such 38

as COVID-19. 39

S1.1 Reformulation of the CIF using competing risks 40

The CIF is a basic quantity in competing risks and plays a key role in calculations of [S1]. 41

However, the CIF is not an easy or intuitive quantity to work with due to it being a complex 42

function of the cause-specific hazards. This can be seen by the following argument. Recall 43

fj = F̄ hj , and therefore 44

Fj(x) =

∫ x

0

fj(s) ds =

∫ x

0

F̄ (s)hj(s) ds =

∫ x

0

F̄ (s) dHj(s) (S5)

where Hj(x) =
∫ x

0
hj(s)ds is the cause-specific cumulative hazard function (CHF). By the 45

mutual exclusiveness of competing risks, the hazard for X is h(x) = h1(x) + h2(x). Because 46

X is a continuous random variable, F̄ (x) = exp(−H(x)) where H(x) =
∫ x

0
h(s)ds is the CHF 47

for X . Therefore, 48

Fj(x) =

∫ x

0

exp

(
−
∫ s

0

2∑
l=1

hl(u) du

)
dHj(s) (S6)

which is a complicated function involving both cause-specific hazards. 49

Now we describe the CIF in a different way. The reformulation will allow us to use hazard
functions of our chosing, thus permitting flexible and intuitive modeling, but will also be done in
such a manner so as to simplify downstream numerical calculations. Let Xj be a continuous
random variable with hazard hj for j = 1, 2. The key point here is that the hazard for Xj is
selected to match the desired cause-specific hazard function, however Xj is an entirely theoretical
construct that in no way is related to the true event time X . Let fTj and FTj be the density and
cumulative distribution function (CDF) for Xj . Thus

hj(x) =
fTj

(x)

1− FTj (x)
=

fTj
(x)

F̄Tj (x)

where F̄Tj (x) = exp(−Hj(x)) is the CCDF for Xj . We can rewrite [S6] as

Fj(x) =

∫ x

0

exp(−H1(s)) exp(−H2(s)) dHj(s)
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and therefore

Fj(x) =

∫ x

0

F̄T1(s)F̄T2(s)hj(s) ds =

∫ x

0

F̄T1(s)F̄T2(s)
fTj

(s)

F̄Tj (s)
ds.

Cancelling the common value in numerator and denominator we obtain 50

F1(x) =

∫ x

0

F̄T2
(s) dFT1

(s), F2(x) =

∫ x

0

F̄T1
(s) dFT2

(s), (S7)

which presents us with a useful characterization of the CIF that can be deployed in our algorithms.
Notice also by [S5], the above implies

f1(x) = F̄T2
(x)fT1

(x) =
[
1−FT2

(x)
]
fT1

(x), f2(x) = F̄T1
(x)fT2

(x) =
[
1−FT1

(x)
]
fT2

(x).

S1.2 Basic reproduction number 51

The basic reproduction number, denoted as R0, equals expected number of infections arising 52

due to contact with a positive case in a population where all individuals are susceptible to 53

infection [36–38]. Because [S1] assumes a potentially non-constant contact rate β(t), the 54

reproduction number is allowed to change across time. 55

Definition 2. Define the basic reproduction number at time t as expected number of cases 56

arising due to contact with an individual who is infected at time t where all individuals are 57

susceptible to infection: 58

R0(t) = E

[∫ t+X

t

β(s) ds

]
=

∫ ∞

0

[∫ t+x

t

β(s) ds

] [
f1(x) + f2(x)

]
dx. (S8)

The length of infectious time X is a random variable. A useful way to summarize its value is 59

by the mean which can be conveniently calculated using the CCDF [39]. 60

Definition 3. Define the mean infectious period, denoted by X̄ , as the expected value of 61

infectious time: 62

X̄ =

∫ ∞

0

xf(x) dx =

∫ ∞

0

F̄ (x) dx =

∫ ∞

0

[
1− F1(x)− F2(x)

]
dx. (S9)

The inverse of the mean infectious time 1/X̄ represents a target value for assessing whether 63

R0(t) < 1 or R0(t) > 1. 64

Theorem 2. If β(t) has an upper bound such that β(t) ≤ 1/X̄ , then R0(t) ≤ 1. 65

Proof.

R0(t) = E

[∫ t+X

t

β(s) ds

]
≤ 1

X̄
· E

[∫ t+X

t

ds

]
=

1

X̄
· E[X] = 1.

66

Observe when β(t) = β is a constant, as assumed by the classical SIR model, we have

R0(t) = E

[∫ t+X

t

β ds

]
= β · E

[∫ t+X

t

ds

]
= β · E[X] = βX̄ := R0.

Therefore under the exponential model we have the following characterization of the basic 67

reproduction number. 68
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Theorem 3. For the exponential model described in Corollary 1, the mean infectious period is

X̄ =

∫ ∞

0

[
1− F1(x)− F2(x)

]
dx =

∫ ∞

0

e−γxdx = 1/γ.

Thus R0 = βX̄ = β/γ and R0 < 1 if and only if β < γ = 1/X̄ . 69

For COVID-19, we will provide evidence that β(t) is non-constant due to fluctuating con- 70

tainment measures and social distancing. Therefore this makes β(t) of critical importance when 71

assessing whether R0(t) < 1. 72

S1.3 Algorithm for a discrete time SICD model 73

It is difficult to solve [S1] directly for an arbitrary γ(t). Therefore, we take a discrete time
approach [40] and describe an algorithm that takes both time t and infectious duration x as
discrete intervals. This will allow the solution to be calculated iteratively. Denote I(t) as the
number of infectious cases on day t and define

i(t, d) = I

∫ d

d−1

fX(t)(x) dx, d = 1, 2, . . . ,M,

as the number of infectious cases at time t who have been infected for x = d days. Here 74

M is a preset number chosen large enough so that i(t,M + 1) := I
∫∞
M

fX(t)(x)dx can 75

safely be assumed to equal zero. Let i(t, 0) be the number of newly infected cases. We 76

have I(t) =
∑M

d=0 i(t, d). The removed cases will be counted separately for cure and death. 77

Number of daily deaths and cured cases on day t is denoted by Ḋt and Ċt. The number 78

of cumulative deaths on day t is D(t) := D(t − 1) + Ḋt and cumulative cured case on 79

day t is C(t) := C(t − 1) + Ċt. The removed cases are the sum of cured and dead cases: 80

R(t) = C(t) +D(t). For the discrete time model, we define the conditional cure and mortality 81

rate for infectious cases who have been infected for x = d days by 82

cd =
F1(d)− F1(d− 1)

F̄ (d− 1)
and md =

F2(d)− F2(d− 1)

F̄ (d− 1)
(S10)

which serves as the discrete time versions of h1(x) and h2(x). Similarly, define the discrete time 83

pseudo-density functions f1(x) and f2(x) by 84

fc(d) = F1(d)− F1(d− 1) and fm(d) = F2(d)− F2(d− 1). (S11)

The discrete time contact rate β(t) is defined as βt = B(t)−B(t− 1) where B(t) =
∫ t

0
β(s)ds. 85

On day t− 1, we have N = S(t− 1) + I(t− 1) +D(t− 1) + C(t− 1). Moving to day t,
the I(t− 1) cases transmit disease to the susceptible cases with rate βt. Consequently, number
of newly infected cases is

S(t− 1)− S(t) = i(t, 0) = βt
I(t− 1)S(t− 1)

N
.

There are three possible outcomes for the I(t − 1) infectious cases on day t: cured, dead, or
infectious (status quo), with probabilities depending on infectious duration. This yields the
following decomposition. First observe that I(t− 1) =

∑M−1
d=0 i(t− 1, d). For i(t− 1, d), the

probability of cure is cd, the probability of death is md and the probability of remaining infectious
is 1−cd−md. The infectious cases, i(t−1, d)×(1−cd−md), will be counted as i(t, d+1) on
day t because their infectious duration increases one day, i.e. i(t, d+1) = i(t−1, d)

(
1−cd−md

)
.

The cured cases, i(t− 1, d)cd, and dead cases, i(t− 1, d)md, are counted towards daily cured
and dead cases on day t. That is,

Ċt =

M−1∑
d=0

i(t− 1, d)cd, and Ḋt =

M−1∑
d=0

i(t− 1, d)md.
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In total, we have 86

S(t) + I(t) + C(t) +D(t)

=
[
S(t− 1)− i(t, 0)

]
+
[ M∑
d=0

i(t, d)
]
+
[
C(t− 1) + Ċt

]
+
[
D(t− 1) + Ḋt

]
= S(t− 1) +

[ M∑
d=1

i(t, d)
]
+
[
C(t− 1) +

M−1∑
d=0

i(t− 1, d)cd

]
+
[
D(t− 1) +

M−1∑
d=0

i(t− 1, d)md

]
= S(t− 1) + C(t− 1) +D(t− 1) +

M−1∑
d=0

[
i(t− 1, d)

(
1− cd −md

)]
+

M−1∑
d=0

i(t− 1, d)cd +

M−1∑
d=0

i(t− 1, d)md

= S(t− 1) + C(t− 1) +D(t− 1) +

M−1∑
d=0

i(t− 1, d)

= S(t− 1) + C(t− 1) +D(t− 1) + I(t− 1) = N.

To check that dS/dt+ dI/dt+ dR/dt = 0 holds, 87[
S(t)− S(t− 1)

]
+
[
I(t)− I(t− 1)

]
+
[
Ċt + Ḋt

]
=

[
− i(t, 0)

]
+
[
i(t, 0) +

M−1∑
d=0

i(t− 1, d)
(
1− cd −md

)
−

M−1∑
d=0

i(t− 1, d)
]

+
[M−1∑

d=0

i(t− 1, d)cd +

M−1∑
d=0

i(t− 1, d)md

]
= 0.

Algorithm 1 describes the discrete time algorithm for calculating {S(t), I(t), R(t), D(t), C(t) : 88

t = 1, . . . , Tmax} where Tmax is maximum number of days under study. 89

Algorithm 1 Discrete Time Algorithm for SICD Model

1: Inputs:
{N, D(0), C(0), {βt}Tmax

1 , {i(0, d)}M1 , {cd}M1 , {md}M1 }
2: Initialize:

I(0) =
∑M

d=0 i(0, d), R(0) = D(0) + C(0), S(0) = N − I(0)−R(0)
3: for t = 1 to Tmax do
4: i(t, 0) = βtI(t− 1)S(t− 1)/N

5: Ḋt =
∑M−1

v=1 i(t− 1, v)mv and Ċt =
∑M−1

v=1 i(t− 1, v)cv
6: for v = 0 to M − 1 do
7: i(t, v + 1) = i(t− 1, v)

(
1− cv −mv

)
8: end for
9: I(t) =

∑M
v=0 i(t, v), D(t) = D(0) +

∑t
s=1 Ḋs and C(t) = C(0) +

∑t
s=1 Ċs

10: R(t) = D(t) + C(t) and S(t) = N −R(t)− I(t)
11: end for
12: return {S(t), I(t), i(t, d), R(t), D(t), C(t), Ċ(t), Ḋ(t)}Tmax

1
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S2 Specification of cd and md 90

Recall from Corollary 1 that the classical SIR model assumes an exponential distribution for X 91

and constant hazards. Although the exponential distribution is widely used in survival analy- 92

sis [41], in these applications the initial time is often recorded as the time point of hospitalization 93

or diagnosis for a specific stage of disease development [42, 43], rather than the beginning of 94

disease development. However the hazard rate at the beginning of disease development such as 95

COVID-19 is often very low with increasing values later in time which makes a constant hazard 96

assumption inappropriate for such settings. 97

S2.1 Lognormal distribution 98

Unlike the exponential distribution, the lognormal distribution [44, 45] can accomodate hazards 99

that can first increase and then decrease over time [46]. Recall identity [S7] provides a method 100

for specifying the CIF in terms of the hazard function of our chosing by specifying a random 101

variable Tj with the target hazard. We use the lognormal distribution which corresponds to Tj 102

that is assumed normally distributed under a log base-e transformation, 103

lnTj ∼ N(µj , σ
2
j ). (S12)

Let φµ,σ and Φµ,σ denote the density and CDF for a N(µ, σ2) random variable. By [S7] we have 104

F1(x) =

∫ x

0

P{T2 ≥ s} dP{T1 ≤ s}

=

∫ x

0

P{lnT2 ≥ ln s} dP{T1 ≤ s}

=

∫ x

0

[1− Φµ2,σ2(ln s)] dP{T1 ≤ s}

=

∫ x

0

dP{T1 ≤ s} −
∫ x

0

Φµ2,σ2
(ln s) dP{T1 ≤ s}

= P{lnT1 ≤ lnx} −
∫ x

0

Φµ2,σ2
(ln s) dP{lnT1 ≤ ln s}

= Φµ1,σ1
(lnx)−

∫ x

0

Φµ2,σ2
(ln s)

1

s
φµ1,σ1

(ln s) ds.

Similarly, we have F2(x) = Φµ2,σ2(lnx)−
∫ x

0
Φµ1,σ1(ln s)

1
s φµ2,σ2(ln s) ds. Both F1 and F2 105

can be rapidly computed using standard software. 106

S2.2 Bimodal lognormal distribution 107

In a second approach we use a bimodal lognormal distribution [47]. This is done in consideration 108

of two possibilities: (1) a subpopulation of infectious cases that are able to recover in a shorter 109

period with low mortality rate; and (2) a subpopulation of infectious cases whose medical 110

situation deteriorates requiring hospitalization care such that after treatment they are either 111

cured or have relatively high mortality rate. Subpopulation (1) can reflect asymptomatic carriers 112

[48–50] and/or carriers involving mutations [51, 52] and/or carriers of viruses with specific 113

lineage [53, 54]. In order to model the lognormal bimodal distribution, Tj is assumed to satisfy 114

lnTj ∼ pN(µj1, σ
2
j1) + (1− p)N(µj2, σ

2
j2). (S13)
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By [S7] we have 115

F1(x)

=

∫ x

0

P{T2 ≥ s} dP{T1 ≤ s}

=

∫ x

0

P{lnT2 ≥ ln s} dP{T1 ≤ s}

=

∫ x

0

[
1− pΦµ21,σ21

(ln s)− (1− p)Φµ22,σ22
(ln s)

]
dP{T1 ≤ s}

=

∫ x

0

dP{lnT1 ≤ ln s} −
∫ x

0

Φµ22,σ22(ln s) dP{lnT1 ≤ ln s}

+p

∫ x

0

[
Φµ22,σ22

(ln s)− Φµ21,σ21
(ln s)

]
dP{lnT1 ≤ ln s}

= pΦµ11,σ11
(lnx) + (1− p)Φµ12,σ12

(lnx)

−
∫ x

0

Φµ22,σ22(ln s)
1

s

[
pφµ11,σ11(ln s) + (1− p)φµ12,σ12(ln s)

]
ds

+p

∫ x

0

[
Φµ22,σ22

(lnx)− Φµ21,σ21
(lnx)

] 1
s

[
pφµ11,σ11

(ln s) + (1− p)φµ12,σ12
(ln s)

]
ds.

Similarly, we have 116

F2(x)

= pΦµ21,σ21
(lnx) + (1− p)Φµ22,σ22

(lnx)

−
∫ x

0

Φµ12,σ12
(lnx)

1

s

[
pφµ21,σ21

(lnx) + (1− p)φµ22,σ22
(ln s)

]
ds

+p

∫ x

0

[
Φµ12,σ12

(ln s)− Φµ11,σ11
(ln s)

] 1
s

[
pφµ21,σ21

(ln s) + (1− p)φµ22,σ22
(ln s)

]
ds.

When p = 1, the above equations simplify to the unimodal case considered previously. 117

S2.3 Comparison of three survival models 118

We investigate daily infected and deaths calculated under three survival model scenarios: 119

1. Exponential model (Scenario I). In this scenario, we use the classical SIR model of 120

Corollary 1 with λ1 = 0.032, λ2 = 2.93× 10−3 and γ = λ1 + λ2 = 0.034. 121

2. Lognormal model (Scenario II). We use a lognormal as in [S12] with µ1 = 3.506, σ1 = 122

0.51, µ2 = 3.8 and σ2 = 0.91; 123

3. Bimodal lognormal model (Scenario III). We use a bimodal lognormal distribution as 124

in [S13] with p = 0.3, µ11 = 1.908, σ11 = 0.4, µ12 = 3.968, σ12 = 0.5, µ21 = µ22 = 125

3.8 and σ21 = σ22 = 0.91. 126

For comparison, we adjust md and cd for scenarios II and III so their mortality rates, Mdeath, 127

and mean infectious periods, X̄ , are the same as those in scenario I. The mortality rate was 8.5% 128

and mean infectious time was X̄ = 29 days. For scenarios II and III, we first calculate F1(x) 129

and F2(x) and then adjust them by 130

F1(x)←
F1(x)× (1−Mdeath)

F1(Tmax)
and F2(x)←

F2(x)×Mdeath

F2(Tmax)
, (S14)
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where Tmax was set to 400. For the three scenarios, F1(x), F2(x) and F̄ (x) are displayed in 131

Fig S1. Discrete time values for fc and fm using [S11] are given in Fig S2A,B and discrete time 132

values {cd,md} using equation [S10] are shown in Fig S2C,D. In the next section, we compare 133

how the three survival models perform in modeling U.S. COVID-19 data. 134

S3 SICD model applied to pre-vaccination data 135

The three survival models were fit to COVID-19 New York Times data using Algorithm 1. 136

Population size was set to N = 325,222,000 equal to the sum of populations for the states and 137

regions reported by the New York Times. Values were intialized using using i(0, 0) = 1, and 138

D(0) = C(0) = i(0, 1) = i(0, 2) = · · · = i(0,M) = 0. Values for {cd,md}M1 were initialized 139

according to the survival model used. 140

S3.1 Constant contact rate 141

As a preliminary step to understand the behavior of models we started with a simplified analysis 142

that assumed a constant contact rate β(t) = βt = β = 0.2. The mortality rate and mean 143

infectious times were set to previous values Mdeath = 8.5% and X̄ = 29. Because all three 144

models have the same infectious period, they have the same basic reproduction number R0 = 145

βX̄ = 0.2× 29 = 5.8. Results are shown in Figs. S3 and S4. In all three scenarios, nearly the 146

entire population is infected within 300 days with 8.5% of infected dead. However, the outbreak 147

ends faster under II than scenarios I and III (Fig S4). Maximum number of daily infected cases 148

peaks differently among the three scenarios. Due to a constant contact rate, infected cases 149

Fig S4D are mainly driven by the distribution of cure time (specified in Fig S2A,C). Within 150

the first 20 days, scenario II assumes the lowest cure rate, therefore its peak of daily infectious 151

cases is the highest among all scenarios. Daily deaths displayed as percentage of population 152

are given in Fig S4B. The dynamics of daily death are driven by the survival specifications 153

of death in Fig S2B,D. Because scenario II has the highest peak, this leads to the highest 154

peak for daily death. Scenario I is the smallest, therefore it has the lowest peak in Fig S4B. 155

Fig S4C displays aCDR, defined as cumulative deaths, D(t), divided by cumulative infected 156

cases, D(t) + I(t) + C(t) = N − S(t). Values of aCDR should be very low at onset of disease 157

due to few individual being cured or dying immediately after infection. Scenario I (exponential) 158

does not conform to this and is therefore unrealistic. 159

S3.2 Data-driven time varying contact rate 160

A constant βt is too simplistic for realistic modeling. This is because βt is heavily influenced
by lockdown measures and social distancing norms that change over time. Hence we apply the
SICD model using a data driven βt rate. Recall that βt equals [i(t, 0)/I(t− 1)]× [N/S(t− 1)],
where i(t, 0) equals newly infected cases on day t. Because it is not easy to directly estimate this
value, some form of approximation is necessary. The technique we use is to approximate I(t)
by the number infected cases reported within X̄ days, since cases reported before X̄ days are
expected to be either cured or dead. Denote the number of daily new infected cases on record by
Inewt . We use the following data driven contact rate:

βt =
Inewt∑t

(s=t−X̄) I
new
s

.

Values for βt are displayed in Fig 2A. Fig S5 displays results from applying the discrete time 161

algorithm using the data driven contact rate (all other parameter settings were the same as before). 162

Scenarios I and III clearly underestimate reported daily infected cases, whereas scenario II 163

estimates these values highly accurately. However all three methods perform poorly in estimating 164

daily reported deaths: Scenarios I and III underestimate values, whereas II overestimates values. 165
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The reason for the poor performance of I and III in estimating daily infections is that both 166

assume a much faster recovery rate than II. Scenario II resolves this issue but as pointed out 167

it still overestimates daily reported deaths. This suggested to us that a decrease in mortality 168

rate must have occurred at some point in time, most likely after easing of lockdown measures. 169

To test this, we set the mortality rate to Mdeath = 1.7% for the second wave defined as the 170

time period of May 9 through August 27. A value of 1.7% was also used for subsequent waves 171

and data. One reason for selecting this particular time period was suggested by the behavior 172

of the estimated contact rate of Fig 2A which displayed a wave like pattern over this time. To 173

further investigate this, we estimated the basic reproduction number R0(t). Its values were 174

estimated using discrete integral calculus using previous values for βt, fm(d) and fc(d) for 175

t, d = 0, 1, . . . , Tmax and where a mortality rate of 1.7% was used for data following first wave. 176

Note that for recent dates, such as R0(t) on February 2nd in 2021, we have to provide βs with 177

s ∈ [t, t+M ] to estimate R0(t), for which we assume the existing wave pattern after May9th 178

is repeated cyclically. Estimated R0(t) is given in Fig S6A. Notice that all three models have 179

R0(t) values that begin roughly at the value of 1 at the start of second wave, and then increase 180

and decrease and return to the value 1 in one full cycle over this time period. It is for this reason 181

we refer to this period as the second wave. A similar pattern for R0(t) is observed for a third 182

wave. We also note that values for R0(t) in Fig S6A are comparable to other studies. The R0 for 183

COVID-19 has been estimated previously at 1.3–6.5 with an approximate average of 3.3 [55, 56]. 184

Fig 3F shows scenario II under the reduced mortality 1.7% for post first-wave data now fits 185

observed values of aCDR, daily infected and deaths over the entire range of data. However, 186

scenario I (Fig 3A) and scenario III (Fig S6C) still poorly approximate observed values. Thus 187

there appears to be fundamental problems in applying these two models to COVID-19 data. 188

Problems with these models are also evident from R0(t) of Fig S6A. The value of R0(t) is high 189

in the first 70 days of the outbreak under all scenarios, which is realistic and expected, however 190

R0(t) is much smaller for scenarios I and III compared with II. It is also worth noting that even 191

though I and III have very similar R0(t) profiles, their estimated values for infected cases and 192

deaths are quite different in Fig S6B. We mention that scenario III was considered under many 193

different parameter settings. We found that even after trying different parameters, scenario III 194

performed poorly unless the two modes for the cure event were very close. Thus we believe the 195

assumption of bimodality is not justified for COVID-19. We conclude there is weak evidence 196

supporting a bimodal distributed cure time where one subpopulation has quicker recovery time. 197

S4 Susceptible Infectious Vaccinated Cure Death Immune 198

(SIVCDI) model for 2021 Vaccination Data 199

We extend the SICD model to include a vaccination compartment as follows: 200

dSU

dt
= −α(t)SU − βU(t)ISU

N
dSV

dt
= α(t)SU − βV (t)ISV

N
− η(t)SV

dIU

dt
=

βU(t)ISU

N
− γU(t)IU

dIV

dt
=

βV (t)ISV

N
− γV (t)IV

dR

dt
= γU(t)IU + γV (t)IV + η(t)SV .

(S15)

Here the unvaccinated susceptible cases are denoted by SU , the vaccinated susceptible cases 201

are denoted by SV , with S = SU + SV as their sum, and likewise where unvaccinated infectious 202

cases are denoted as IU , vaccinated infectious are denoted as IV , with I = IU + IV as their 203
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sum. The function α(t) is the vaccination rate at time t, βU is the effective contact rate for 204

unvaccinated cases at time t, equal to average number of contacts per person per time multiplied 205

by probability of disease transmission between a unvaccinated susceptible and infectious case 206

at time t, βV is the contact rate between a vaccinated susceptible case and infectious case at 207

time t, γU(t) denotes the removal rate for unvaccinated infectious cases at time t, γV (t) is the 208

removal rate for the vaccinated infectious cases and η(t) is the immune rate equal to percentage 209

of vaccinated individuals who become immune to the disease. The sample size N is fixed and 210

the above five equations can be reduced to four using N = SU + SV + I +R. 211

Because [S15] is an extension to include vaccination and immunity we refer to this as the
Susceptible Infectious Vaccinated Cure Death Immune (SIVCDI) model. Previously for the
SICD model, we used X as the continuous event time of an infected individual who either
recovers from infection or dies due to infection. With the SIVCDI model, X becomes XU and
we add a new continuous variable XV , defined as the event time for an infected vaccinated
individual who either becomes cured or dies. Related to XV is is another new variable EV ,
defined as the event time for a vaccinated individual who becomes immune. We denote its
density by fEV

(x) and its CDF by FEV
(x) = P{EV ≤ x}. Additionally, define EV (t) to be

the length of time a vaccinated individual has been vaccinated at time t. Denote its density by
fEV (t)(x) where

∫∞
0

fEV (t)(x)dx = 1. Using a similar argument as Theorem 1, we have

η(t) =

∫ ∞

0

fEV
(x)

1− FEV
(x)

fEV (t)(x) dx.

Similar to X of Theorem 3, define the mean immunity period as EV =
∫∞
0

[1 − FEV
(x)]dx 212

which equals the average number of days a vaccinated individual who becomes immune requires 213

to develop immunity. The parameter EV can be influenced by brand of vaccine and timing of 214

follow-up dose(s). 215

S4.1 Algorithm for a discrete time SIVCDI Model 216

Define v(t, d′) = SV
∫ d′

d′−1
fEV (t)(x) dx, d′ = 1, 2, . . . ,M , as the number of vaccinated cases 217

at time t who have been vaccinated for x = d′ days. As in section S1.3, M is a preset number 218

chosen large enough so that v(t,M +1) := SV
∫∞
M

fEV (t)(x)dx can safely be assumed to equal 219

zero. Let v(t, 0) be the number of newly vaccinated cases. We have SV (t) =
∑M

d′=0 v(t, d
′). 220

For the discrete time model, we define the conditional immunity rate for vaccinated cases 221

who have been vaccinated for x = d′ days by 222

ed′ =
FEV

(d′)− FEV
(d′ − 1)

1− FEV
(d′ − 1)

(S16)

The cumulative number of cases who are vaccinated immune at day t is

Ė(t) =

M−1∑
d′=0

v(t− 1, d′)ed′ .

The number of vaccinated cases who become immune at day t is E(t) = E(t− 1) + Ė(t). The 223

removed cases will be counted separately for cure, death and additionally, vaccinated immunity: 224

R(t) = C(t) +D(t) + E(t). 225

Number of infectious cases at time t who have been infected for x = d days, i(t, d), described
previously are now separated into iU(t, d) and iV (t, d) for unvaccinated and vaccinated infectious
cases on day t with infected duration d, respectively. We also use separate conditional cure rates,
cUd and cVd , and conditional death rates, mU

d and mV

d , for unvaccinated and vaccinated infectious
cases. The update from i(t− 1, d) to i(t, d+ 1) can be used for updating iU(t, d) and iV (t, d).
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Similar to i(t, d), values v(t, d′) are calculated iteratively. The number of newly vaccinated
cases is

v(t, 0) = αtS
U(t) = V new

t ,

where αt is the discrete time version of α(t). Because αt is usually not available, we use newly 226

vaccinated cases from public data to estimate this, this being denoted as V new
t . For v(t− 1, d′), 227

the probability of immunity is ed′ and the probability of remaining vaccinated is 1− ed′ . The 228

vaccinated cases, v(t− 1, d′)× (1− ed′), will be counted as v(t, d′ + 1) on day t because their 229

vaccinated duration increases one day, i.e. v(t, d′ + 1) = v(t− 1, d′)
(
1− ed′

)
. 230

Algorithm 2 describes the discrete time algorithm for calculating

{SU(t), SV (t), I(t), R(t), D(t), C(t), E(t) : t = 1, . . . , Tmax}

where as before Tmax is maximum number of days under study. 231

Algorithm 2 Discrete Time Algorithm for the SIVCDI Model

1: Inputs:
{N, SU(0), SV (0), E(0), D(0), C(0), {v(0, d)}M1 , {iU(0, d)}M1 , {iV (0, d)}M1 ,

{V new
t }Tmax

1 , {βU
t }

Tmax
1 , {βV

t }
Tmax
1 , {cUd }M1 , {mU

d }M1 , {cVd }M1 , {mV

d }M1 , {ed′}M1 }
2: Initialize:

IU(0) =
∑M

d=0 i
U(0, d), IV (0) =

∑M
d=0 i

V (0, d),
I(0) = IU(0) + IV (0), R(0) = D(0) + C(0) + E(0),
SU(0) = N − SV (0)− I(0)−R(0)

3: for t = 1 to Tmax do
4: v(t, 0) = V new

t and Ėt =
∑M−1

d′=1 v(t− 1, d′)ed′

5: iU(t, 0) = βU
t I(t− 1)SU(t− 1)/N and iV (t, 0) = βV

t I(t− 1)SV (t− 1)/N

6: Ḋt =
∑M−1

d=1 iU(t− 1, d)mU

d +
∑M−1

d=1 iV (t− 1, d)mV

d

7: Ċt =
∑M−1

d=1 iU(t− 1, d)cUd +
∑M−1

d=1 iV (t− 1, d)cVd
8: for w = 0 to M − 1 do
9: v(t, w + 1) = v(t− 1, w)

(
1− ew

)
10: iU(t, w + 1) = iU(t− 1, w)

(
1− cUw −mU

w

)
11: iV (t, w + 1) = iV (t− 1, w)

(
1− cVw −mV

w

)
12: end for
13: SV (t) =

∑M
d′=0 v(t, d

′), E(t) = E(0) +
∑t

s=1 Ės

14: IU(t) =
∑M

d=0 i
U(t, d), IV (t) =

∑M
d=0 i

V (t, d), I(t) = IU(t) + IV (t),

15: D(t) = D(0) +
∑t

s=1 Ḋs and C(t) = C(0) +
∑t

s=1 Ċs

16: R(t) = D(t) + C(t) + E(t) and SU(t) = N − SV (t)− I(t)−R(t)
17: end for
18: return {SU(t), SV (t), v(t, d′), I(t), iU(t, d), iV (t, d), R(t), D(t), C(t), E(t)}Tmax

1

S4.2 Specification of βU
t , β

V
t and ed′ 232

We use published vaccine studies to estimate βU
t and βV

t . Let a% and b% be percentages of
infected case in the vaccine and control group, respectively. We can assume βV

t /β
U
t = a/b. The

contact rate βt, is a weighted average of βU
t and βV

t ,

SU(t− 1)

SU(t− 1) + SV (t− 1)
βU

t +
SV (t− 1)

SU(t− 1) + SV (t− 1)
βV

t = βt,
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We calculate βt as in the SICD model and by updating SU(t− 1) and SV (t− 1) iteratively we 233

obtain data driven βU
t and βV

t . A recent vaccine cohort study [57] found an incidence rate of 234

4.7 vs 149.8 per 100,000 person-days for vaccinated to unvaccinated for symptomatic SARS- 235

CoV-2. The study also reported an incidence rate of 11.3 vs 67.0 per 100,000 person-days for 236

asymptomatic infection. Thus we obtain the ratio of percentages of infected cases for vaccinated 237

group and control group as a/b = (4.7 + 11.3)/(149.8 + 67). 238

For the immune rate ed′ , we assume an exponential function F (x) = 1− e−ζx. The mean 239

expected time for exponential distribution is EV = 1/ζ , so ζ is identifiable and estimatable. We 240

assume the mean immunity period is EV = 30 days, thus yielding ed′ = e−1/30 − 1 = 0.0339. 241

For the current data, our results were not particularly sensitive to EV . We obtained V new
t from 242

publicly available data [58]. As has been widely observed, mortality rate for vaccinated is near 243

zero, thus we set the death rate for this group to Mdeath = 0.001%. Based on our what-if 244

analysis we use a reduced cure time of 25 days. All other parameters including parameters for 245

the unvaccinated infecious cases were set as before for the pre-vaccination analysis. The results 246

are shown in Fig 6 and show a near perfect fit. 247
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Scenario II: lognormal survival model
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Scenario III : bimodal lognormal survival model
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Fig S1. Comparison of three different survival models where all models have identical mean
infectious period X̄ = 29 and mortality rate Mdeath = 8.5%. Shown are CCDF F̄ (t) (black),
CIF for cure F1(t) (orange) and CIF for death F2(t) (green). Scenario I uses an exponential
distribution, which is equivalent to the classical SIR model by Corollary 1. Scenario II uses a
lognormal distribution. Scenario III uses a bimodal lognormal distribution.
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Fig S2. Discrete time survival values for scenario I (red), II (blue) and III (purple). (A) Discrete
time pseudo-densities for cure. Most infections recover at the beginning in scenario I; around
15-40 days in scenario II; and either within 17 days, or around 25 to 55 days, in scenario III. (B)
Discrete time pseudo-densities for death. Most deaths occur at the beginning in scenario I and
around 15-40 days in scenarios II and III. (C) Discrete time hazard rates for cure. Scenario I has
constant hazard whereas scenarios II and III assume hazards that initially increase and then
decrease. Scenario III assumes a bimodal shape for the cure hazard. (D) Discrete time hazard
rates for death.
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Scenario III : bimodal lognormal survival 
model

Time t  (day)

P
ro

po
rt

io
n 

of
 p

op
ul

at
io

n

Infectious, I(t)
Daily cured, C

⋅ (t) × 30
Daily death, D

⋅ (t) × 200

Fig S3. Discrete time SIR models assuming a constant contact rate β(t) = 0.2. Infectious cases
I(t) (black), daily cured cases Ċ(t) (orange) and daily deaths Ḋ(t) (green) are displayed as
percentage of total population. Daily cured and deaths being much smaller than I(t) are
multiplied by 30 and 200. In scenario I, all values have the same trend and peak at the same time.
In scenario II, daily deaths peak after infectious cases, which is more realistic. In scenario III,
deaths also peak after infectious cases, but daily cured has two waves due to the bimodal
distribution assumption.
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Fig S4. Comparison of discrete time SIR models assuming a constant contact rate β(t) = 0.2.
(A) Daily cured. (B) Daily deaths. (C) aCDR. (D) Infectious cases as percentage of population,
I(t)/N . Values of aCDR should be very low at onset of disease due to few cures and death
occuring immediately after infection. Therefore, scenario I is unrealistic.
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Scenario I: exponential survival model
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Scenario II: lognormal survival model
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Scenario III: bimodal lognormal survival model
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Fig S5. Analysis of COVID-19 pre-vaccination data assuming a constant mortality rate for first
and subsequent waves. Scenario II is best at estimating daily new cases. However, aCDR and
daily deaths are overestimated after first wave, thus suggesting a lower mortality for post-first
wave data.
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Fig S6. Analysis of COVID-19 pre-vaccination data assuming a lower mortality rate for second
and subsequent waves. (A) Basic reproduction number R0(t); note its values are much smaller
for Scenarios I and III than II. (B) Even though scenarios I and III have similar R0(t) profiles,
estimated values for daily new infections and deaths are different. (C) Bimodal lognormal
distribution continues to perform poorly even under assumption of lower mortality for post-first
wave data.
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