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Abstract: Random survival forests (RSF) is a flexible nonparametric tree-ensemble method for the analysis of right-
censored survival data. In this article we provide a short overview of RSF. We review survival splitting rules for growing
random survival trees, in-bag and out-of-bag (OOB) ensemble estimators, prediction performance, variable importance,
and partial plots. We also briefly describe the extension of RSF to competing risks. Copyright © 2018 John Wiley &
Sons, Ltd.

1. Introduction
Random forests (RF) (stat06520) is a popular tree-ensemble method introduced by Leo Breiman [3] with broad
applications to machine learning and statistics. It is well known that constructing ensembles by averaging base
learners, such as trees, can substantially improve prediction performance. RF builds on this concept by injecting
further randomization into the base learning process. Specifically, randomization is introduced in two forms. First, a
randomly drawn bootstrap sample of the data is used to grow a tree. Second, at each node of the tree, a randomly
selected subset of variables is chosen as candidates for splitting. The purpose of this two-step randomization is to
decorrelate trees, which encourages low variance for ensemble due to the property of bagging [2]. Furthermore, RF trees
are typically grown very deeply; in fact, Breiman’s original RF classifier called for growing a classification tree to purity
(one observation per terminal node). The use of deep trees, a bias reduction technique, when combined with reduced
variance due to averaging and randomization, enables RF to approximate rich classes of functions while maintaining
low generalization error.

Early applications of RF focused on regression and classification problems. Random survival forests [22] (RSF) was
introduced to extend RF to the setting of right-censored survival data. Implementation of RSF follows the same
general principles as RF: (a) Survival trees are grown using bootstrapped data; (b) Random feature selection is used
when splitting tree nodes; (c) Trees are generally grown deeply, and (d) The survival forest ensemble is calculated by
averaging tree survival predictors.

The RSF algorithm can be broadly described as follows:

1. Draw ntree bootstrap samples from the original data.
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2. Grow a survival tree for each bootstrapped dataset. At each node of the tree randomly select mtry variables for
splitting on. Split on the variable that optimizes a chosen survival splitting criterion.

3. Grow the tree to full size under the constraint that a terminal node should have no less than nodesize unique
cases. Calculate the tree predictor.

4. Calculate in-bag and out-of-bag (OOB) ensemble estimators by averaging the tree predictors.
5. Use the OOB estimator to estimate out-of-sample prediction performance.
6. Use OOB estimation to calculate variable importance.

Although Cox’s proportional hazard regression method [7] is very popular for time-to-event data analysis, RSF has
become attractive as a nonparametric method with less restrictive model assumptions. Some of RSF’s important
properties are that: (a) It is fully nonparametric and can identify survival risk factors without assuming parametric
relationship (linear or nonlinear) or prior knowledge of interactions among variables; (b) It is robust to outliers and
does not suffer from convergence problem; (c) It can be used for high dimensional data; (d) It offers out-of-bag (cross-
validated) prediction that does not overfit the data and therefore can be used for reliable inference of the training
data; and (e) It provides a fully nonparametric variable importance measure of a variables’ contribution to predicting
survival.

In the following sections we outline the steps in applying the RSF algorithm and illustrate its use with examples.
The extension of RSF to competing risks is also briefly coverered. All examples are illustrated using the R-package,
randomForestSRC [21]. Finally we note that this article focuses only on RSF as defined in [22] which strictly adheres
to the RF approach described by Breiman. For other ensemble survival approaches see [16,17,32].

2. Splitting Rules for Growing a RSF Tree
The presence of censoring is a unique feature of survival data that complicates certain aspects of implementing RSF. In
right-censored survival data the observed data is (T, δ) where T is time and δ is the censoring indicator. The observed
time T is defined as the minimum of the true (potentially unobserved) survival event time T o and the true (potentially
unobserved) censoring time Co ; thus T = min(T o , Co) and the actual event time might not be observed. The censoring
indicator is defined as δ = 1{T o ≤ Co}. When δ = 1, an event has occurred (i.e., death has occurred) and we observe
the true event time, T = T o . Otherwise when δ = 0, the observation is censored and we only observe the censoring
time T = Co : thus we know that the subject has survived to time Co , but not when the subject actually dies. The
true event time being subject to censoring must be dealt with when growing a RSF tree. In particular, the splitting
rule for growing the tree must specifically account for this censoring. In this section we discuss survival splitting used
to grow a RSF tree. We begin by discussing RF trees.

2.1. RF trees
The basic unit of RF (the so-called base learner) is a binary tree (stat07514.pub2) constructed using recursive
partitioning (RPART). The RF tree base learner is grown using the approach of CART [5] (classification and regression
tree), a method in which binary splits recursively partition the tree into homogeneous or near-homogeneous terminal
nodes (the ends of the tree). A good binary split pushes data from a parent tree-node to its two daughter nodes so
that the ensuing homogeneity in the daughter nodes is improved from the parent node. Common splitting rules used
for CART are the within node sum of squares for regression and the Gini splitting criterion for classification. Note
that while RF trees are grown using CART’s approach, RF trees differ as they are grown nondeterministically using
bootstrapping and random feature selection. As discussed, this randomization decorrelates trees and reduces variance.
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Futhermore, while CART typically grows shallow trees to avoid overfitting, RF trees are generally grown deeply in
order to reduce bias.

2.2. RSF trees
RSF trees are also grown by applying RPART. Because RSF deals with event history (survival) data, the goal is to
split the tree node into left and right daughters with dissimilar event history (survival) behavior. This is accomplished
by using an appropriate splitting rule.

2.2.1. Log-rank splitting

One of the most popular splitting rules is the log-rank test statistic. Traditonally the log-rank test is used for two-
sample testing with survival data, but it can be employed for survival splitting as a means for maximizing between-node
survival differences [6,29,30,25,26].

To explain log-rank splitting, let h denote the tree node to be split. Without loss of generality let h be
the root node (top of the tree). For simplicity assume the data is not bootstrapped, and denote the data by
(T1,X1, δ1), . . . , (Tn,Xn, δn) where Xi is i ′s feature vector (covariate) and Ti and δi are the observed time and
censoring indicators for i . Let X denote a specific variable (i.e., coordinate of the feature vector X). A proposed split
using X is of the form X ≤ c and X > c (for simplicity we assume X is nominal) and splits h into left and right
daughters, L and R, respectively. Let

t1 < t2 < · · · < tm
be the distinct death times and let dj,L, dj,R and Yj,L, Yj,R equal the number of deaths and individuals at risk at time tj
in daughter nodes L,R. At risk means the number of individuals in a daughter who are alive at time tj , or who have
an event (death) at time tj :

Yj,L = #{Ti ≥ tj , Xi ≤ c}, Yj,R = #{Ti ≥ tj , Xi > c}.

Define
Yj = Yj,L + Yj,R, dj = dj,L + dj,R.

The log-rank split-statistic value for the split L = {Xi ≤ c} and R = {Xi > c} is

L(X, c) =

m∑
j=1

(
dj,L − Yj,L

dj
Yj

)
√√√√ m∑
j=1

Yj,L
Yj

(
1−
Yj,L
Yj

)(
Yj − dj
Yj − 1

)
dj

.

The value |L(X, c)| is a measure of node separation. The larger the value, the greater the survival difference between
L and R, and the better the split is. The best split is determined by finding the feature X∗ and split-value c∗ such that
|L(X∗, c∗)| ≥ |L(X, c)| for all X and c .

2.2.2. Other splitting rules (deterministic and randomized)

Other splitting approaches for survival trees include rules based on measures of impurity for survival data [8,12]. Another
promising approach are split-statistics based on the Brier score [13]. This may be prefered to log-rank splitting when
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censoring depends strongly on X. Doubly robust split-statistics [31] have also been proposed for further robustification
in complex survival settings. However, with these latter statistics there is a heavier computational cost in their
implementation. In general, split-statistics for survival trees are far more computationally demanding than those used
for RF regression and classification. This is true even for the log-rank split-statistic. One successful method for reducing
computational expense is to employ randomized splitting rules [22,23,19]. Rather than splitting the node by considering all
possible split-values for a variable, instead a fixed number of randomly selected split-points c1, . . . , cnsplit are chosen.
For example, the best randomized split using log-rank splitting is the maximal value of

|L(X, c1)|, . . . , |L(X, cnsplit)|.

For each variable X, this reduces n split-statistic evaluations (worst case scenario) to nsplit� n evaluations. Not
only does randomized splitting greatly reduce computations, it also mitigates the well known tree bias of favoring
splits on variables with a large number of split-points, such as continuous variables or factors with a large number of
categorical labels [27]. Related work includes [11] who investigated extremely randomized trees. Here a single random
split-point is chosen for each variable (i.e., nsplit = 1).

3. Survival Tree Predictor
RSF estimates the survival function, S(t|X) = P{T o ≥ t|X}, and the cumulative hazard function (CHF),

H(t|X) =
∫
(0,t]

F (du|X)
S(u|X) , F (u|X) = P{T o ≤ u|X}.

In this section we review how these two quantities are estimated using a survival tree.

3.1. In sample (in-bag) estimators
Once the survival tree is grown, the ends of the tree are called the terminal nodes. The survival tree predictor is defined
in terms of the predictor within each terminal nodel. Let h be a terminal node of the tree and let

t1,h < t2,h < · · · < tm(h),h

be the unique death times in h and let d∗j,h and Y ∗j,h equal the number of deaths and individuals at risk at time tj,h
(we use the superscript ∗ here to emphasize these values are bootstrapped due to the survival tree being constructed
from bootstrapped data). The CHF and survival functions for h are estimated using the bootstrapped Nelson-Aalen
and Kaplan-Meier estimators (stat06004.pub2):

H∗h(t) =
∑
tj,h≤t

d∗j,h
Y ∗j,h
, S∗h(t) =

∏
tj,h≤t

(
1−
d∗j,h
Y ∗j,h

)
.

The survival tree predictor is defined by assigning all cases within h the same CHF and survival estimate. This makes
sense because the purpose of the survival tree is to partition the data into homogeneous groups (i.e., terminal nodes)
of individuals with similar survival behavior. To estimate H(t|X) and S(t|X) for a given feature X, drop X down the
tree. Because of the binary nature of a tree, X will fall into a unique terminal node h. The CHF and survival estimator
for X is the bootstrapped Nelson-Aalen and Kaplan-Meier estimator for X’s terminal node:

H∗(t|X) = H∗h(t), S∗(t|X) = S∗h(t), if X ∈ h.

Because the above estimators are based on bootstrap data, we refer to them as in-sample or in-bag estimators.
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3.2. Out-of-bag (OOB) estimators
Each survival tree is calculated using a bootstrap sample of the original data. On average a bootstrap leaves out
36.8% of the data. This data is not used to grow the tree and represents out-of-sample data that can be used for
cross-validation purposes. This data is called out-of-bag (OOB).

To define the OOB estimator it will be convenient to define an indicator Ii which indicates whether case i is in-bag
or OOB. Let Ii = 1 if i is OOB, otherwise set Ii = 0 if i is in-bag. The OOB CHF and survival estimators for an OOB
case is determined by the cases’ terminal node membership. Drop i down the tree and let h denote i ’s terminal node.
The OOB CHF and survival estimators for i are

H∗∗(t|Xi) = H∗h(t), S∗∗(t|Xi) = S∗h(t), if Xi ∈ h and Ii = 1.

In the above we use the superscript ∗∗ to emphasize that estimators are OOB.

4. Ensemble CHF and Survival Function
The ensemble CHF and survival function are determined by averaging the tree estimator. Let H∗b(t|X) and S∗b(t|X)
be the in-bag CHF and survival estimator for the bth survival tree. The in-bag ensemble estimators are

sH∗(t|X) =
1

ntree

ntree∑
b=1

H∗b(t|X), sS∗(t|X) =
1

ntree

ntree∑
b=1

S∗b(t|X).

Likewise, the OOB ensemble is calculated by averaging the OOB tree estimators. Let Oi = O(Xi) record trees where
case i is OOB. The OOB ensemble estimators are

sH∗∗(t|Xi) =
1

|Oi |
∑
b∈Oi

H∗b(t|Xi), sS∗∗(t|Xi) =
1

|Oi |
∑
b∈Oi

S∗b(t|Xi).

An important distinction between the two sets of estimators is that OOB estimators are used for inference on the
training data and for estimating prediction error and only apply to features X = Xi in the original data. In-bag estimators
on the other hand are used for prediction and can be used for any feature X.

To illustrate, we used the survival data from [18] consisting of 2231 adult patients with systolic heart failure. All
patients underwent cardiopulmonary stress testing. During a mean follow-up of 5 years (maximum for survivors, 11
years), 742 patients died. The outcome is all-cause mortality and a total of p = 39 covariates were measured for each
patient including demographic, cardiac and noncardiac comorbidity, and stress testing information. Figure 1 displays
the (in-bag) predicted survival functions for two hypothetical individuals, where all p features of the two individuals
are set to the median level except for the variable peak VO2. For one of the individuals this is set at the 25th quantile
for peak VO2 (peak VO2 = 12.8 mL/kg per min) and shown using a solid black line. For the other individual this was
set to the 75th quantile (peak VO2 = 19.3 mL/kg per min) and shown using a dashed red line.

5. Prediction Performance
Prediction error can be evaluated using Harrell’s concordance index [15]. The C-index (concordance index) is related to
the area under the ROC curve (stat05255). Through all permissible pairs of individuals over the data, it estimates the
probability that the individual who experienced the event first had a worse predicted outcome. Here, we compare the
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Figure 1. Predicted survival functions for two hypothetical
individuals from RSF analysis of systolic heart failure data.
Solid black line represents individual with peak VO2 = 12.8
mL/kg per min. Red dash line represents individual with Peak
VO2 = 19.3 mL/kg per min. All other variables for both
individuals are set to the median value.
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Figure 2. Brier score averaged through 10 runs of 5-fold
cross-validation for the systolic heart failure data [18]. RSF is
compared to Cox regression.

OOB predicted outcome. To rank two cases i and j with features Xi and Xj , we say i has a worse predicted outcome
than j if [22]

m∑
l=1

sH∗∗(tl |Xi) >
m∑
l=1

sH∗∗(tl |Xj),

where t1 < t2 < · · · < tm are the unique event times. The left- and right-hand sides denote the OOB mortality for i
and j which are measures reflecting number of expected deaths if all data points had the same features as Xi or Xj
(see [22] for more details about mortality). The OOB prediction error (PE) is defined as 1 minus the C-index. A value
of 0.5 indicates prediction no better than random guessing.

The Brier score, BS(t), is another popular measure used to assess prediction peformance. Let Ŝ(t|X) be some
estimator of the survival function. To estimate the prediction performance of Ŝ, let Ĝ(t|X) be a prechosen estimator
of the censoring survival function, G(t|X) = P{Co ≥ t|X}. The Brier score for Ŝ(t|X) can be estimated by [10]

B̂S(t) =
1

n

n∑
i=1

{
Ŝ2(t|Xi)I{Ti ≤ t}δi
Ĝ(Ti − |Xi)

+

(
1− Ŝ(t|Xi)

)2
I{Ti > t}

Ĝ(t|Xi)

}
.

The integrated Brier score at time τ is defined as

IBS(τ) =
1

τ

∫ τ
0

BS(t)dt

which can be estimated by substituting B̂S(t) for BS(t). Lower values for the Brier score indicate better prediction
performance. Figure 2 displays B̂S(t) for the systolic heart failure data [18] for Cox regression and RSF. The reverse
Kaplan-Meier estimator was used to estimate the censoring distribution. RSF outperforms Cox regression in this case
because it yields an overall lower integrated Brier score.
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6. Variable Importance
RSF provides a fully nonparametric measure of variable importance (VIMP). The most common measure is Breiman-
Cutler VIMP [4] and is called permutation importance. VIMP calculated using permutation importance adopts a
prediction based approach by measuring prediction error attributable to the variable. A clever feature is that rather
than using cross-validation, which can be computationally expensive, permutation importance makes use of OOB
estimation. Specifically, to calculate the VIMP for a variable X, we randomly permute the OOB values of X in a tree
(the remaining coordinates of X are not altered). The perturbed OOB data is dropped down the tree and the OOB
error for the resulting tree predictor determined. The amount by which this new error exceeds the original OOB error
for the tree equals the tree importance for X. Averaging over trees yields permutation importance for X.

Large positive VIMP indicates high predictive ability while zero or negative values identify noise variables.
Subsampling [24] can be used to estimate the standard error and to approximate the confidence intervals for VIMP.
Figure 3 displays delete-d jackknife 99% asymptotic normal confidence intervals for the p = 39 variables from the
systolic heart failure RSF analysis. Prediction error was calculated using the C-index.

Variable Importance
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Figure 3. Delete-d jackknife 99% asymptotic normal confidence intervals of VIMP from RSF analysis of systolic heart failure
data. Prediction error is defined using Harrell’s concordance index.
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7. Partial Plots
Another useful tool for interpreting the results from a RSF analysis is the partial dependence plot [9]. Figure 4 displays
the partial dependence plot for the most important variable, peak VO2 from our previous analysis (i.e., the variable
with the largest VIMP from Figure 3). The figure displays 5 year OOB survival as a function of peak VO2; in particular
observe that survival depends strongly on its value, increasing in value with increasing peak VO2 capacity.

An important feature of the partial dependence plot is that it displays the dependence of survival on the target
variable while adjusting for all other variables. This is accomplished by integrating out the effect of the other variables.
Specifically, let sS∗∗(t|Xi , Xi = x) be the OOB ensemble survival function for Xi where Xi represents the peak VO2
value and the observed value of Xi is replaced by some prechosen value x . In other words, patient i ’s variables are set
to their observed values except peak VO2 which is fixed at x . The OOB partial predicted survival function for peak
VO2 at x equals

sS∗∗X (t|x) =
1

n

n∑
i=1

sS∗∗(t|Xi , Xi = x).

The value sS∗∗X (t|x) is what is displayed on the vertical axis of Figure 4 for t = 5 years as x is varied.

Partial dependence plots can be defined for more than one variable. For example, if the target variables are X(k)

and X(l), the OOB partial predicted survival function at X(k) = a and X(l) = b equals

sS∗∗X(k),X(l)(t|a, b) =
1

n

n∑
i=1

sS∗∗(t|Xi , X(k)i = a,X
(l)
i = b).

Figure 5 displays the partial dependence plot of peak VO2 and BUN which are the top two variables from our previous
analysis. The contour plot shows how 5 year OOB survival depends jointly on these two variables. In particular, low
peak VO2 combined with high BUN yields poor survival, wheras high peak VO2 combined with low BUN yields improved
survival.

8. Competing Risks
In this section we briefly review the extension of RSF to competing risks developed in [20]. In competing risks, unlike
survival where there is only one event type, the individual is subject to J > 1 competing risks (stat03948). As in
survival data, a complication is that the individual can be right-censored. Formally, let T o be the true event time and
let δo ∈ {1, . . . , J} record the event type. Let Co denote the true censoring time. Under the presence of right-censoring
we only observe T = min(T o , Co) and the censoring indicator δ = δo · I{T o ≤ Co}. Thus for each individual one either
observes the time an event occurs T = T o and the type of event which occured δ = δo ∈ {1, . . . , J}. Otherwise if the
individual is right-censored, we observe the censoring time T = Co and the censoring indicator is δ = 0.

8.1. Competing risk splitting rules
There are three splitting rules used by RSF to grow a competing risk tree [20]:

(1) Generalized log-rank test. This tests for equality of the event-specific hazard functions and is most appropriate
when the analysis focuses on determining risk factors for an event-specific hazard. The generalized log-rank test
is based on the weighted difference of the Nelson-Aalen event-specific CHF estimates in the daughter nodes.
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Figure 4. Partial dependence plot displaying 5 year OOB survival as a function of peak VO2.
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Figure 5. Partial dependence plot displaying 5 year OOB survival as a function of peak VO2 and BUN.

Wiley StatsRef 2018, 99 1–12 9 Copyright © 2018 John Wiley & Sons, Ltd.
Prepared using WileySTAT.cls



Wiley StatsRef Hemant Ishwaran and Min Lu

(2) Gray’s test. This is a modification of Gray’s test [14] and tests for the equality of the cause-specific cumulative
incidence functions (CIF). This is most appropriate when the goal is long term probability prediction.

(3) Composite (weighted) splitting rule. This averages the generalized log-rank test or Gray’s test across the J event
types. This is used if the aim is to predict the CIF of all events simultaneously or if interest is in identifying
variables important for any of the J events.

8.2. Event-specific ensembles
Let (Ti , δi ,Xi)1≤i≤n denote the data where Ti is the observed time, δi ∈ {0, 1, . . . , J} is the observed censoring
indicator, and Xi is the feature. Let ci ,b be the number of times case i occurs in bootstrap sample of the bth
tree. Let hb(X) be the terminal node of bth tree containing X. Denote in-bag node-specific event counts by
N∗j,b(t|X) =

∑
i∈hb(X) ci ,bI{Ti ≤ t, δi = j} and in-bag number at risk by Y ∗b (t|X) =

∑
i∈hb(X) ci ,bI{Ti ≥ t}. The tree

estimator for the event-specific CIF, Fj(t|X) = P{T o ≤ t, δo = j |X}, is the bootstrapped Aalen-Johansen estimator [1]:

F ∗j,b(t|X) =
∫
(0,t]

S∗b(u − |X)Y ∗b (u|X)−1N∗j,b(du|X), j = 1, . . . , J,

where S∗b(t|X) =
∏
u≤t
[
1−

∑J
j=1 N

∗
j,b(du|X)/Y ∗b (u|X)

]
is X’s bootstrapped Kaplan-Meier estimate of event-free

survival.

Averaging F ∗j,b(t|X) over trees yields the in-bag ensemble estimate for the event-specific CIF, sF ∗j (t|X). An OOB
estimator is constructed using OOB data. Let Oi = O(Xi) record trees where case i is OOB. The OOB ensemble
estimate is

sF ∗∗j (t|Xi) =
1

|Oi |
∑
b∈Oi

F ∗j,b(t|Xi).

To illustrate, we use the follicular cell lymphoma data from [28]. The subset of 541 patients includes all patients
identified as having follicular type lymphoma. Patients were treated with radiation alone or with radiation and
chemotherapy. The two types of events are relapse and death. Figure 6 displays the averaged OOB ensemble CIF
for the two events from a RSF competing risk analysis using the composite Gray splitting rule. Figure 7 displays VIMP
where prediction error was measured using the truncated Harrell’s C-index [20]. Here VIMP was calculated using the
generalized log-rank splitting rule, in which separate RSF analyses were run for each event type. This type of analysis
is most appropriate where the goal is to identify risk factors specific to an event. We see that age of the individual is
highly predictive of death but not the competing risk of relapse.

9. Related Articles
stat06520
stat08010
stat07514.pub2
stat06004.pub2
stat03948
stat06529
stat07516
stat07466
stat05255
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Figure 6. Averaged OOB ensemble cumulative incidence
function (CIF) from RSF competing risk analysis of follicular
cell lymphoma data using the composite Gray split-statistic.
Black and red lines represent event type relapse and death
respectively (1=relapse, 2=death).
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