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Computing within-study
covariances, data visualization,
and missing data solutions for
multivariate meta-analysis with
metavcov

Min Lu*

Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of

Miami, Miami, FL, United States

Multivariate meta-analysis (MMA) is a powerful statistical technique that

can provide more reliable and informative results than traditional univariate

meta-analysis, which allows for comparisons across outcomes with increased

statistical power. However, implementing appropriate statistical methods for

MMA can be challenging due to the requirement of various specific tasks in

data preparation. The metavcov package aims for model preparation, data

visualization, and missing data solutions to provide tools for di�erent methods

that cannot be found in accessible software. It provides su�cient constructs

for estimating coe�cients from other well-established packages. For model

preparation, users can compute both e�ect sizes of various types and their

variance-covariance matrices, including correlation coe�cients, standardized

mean di�erence, mean di�erence, log odds ratio, log risk ratio, and risk di�erence.

The package provides a tool to plot the confidence intervals for the primary studies

and the overall estimates. When specific e�ect sizes are missing, single imputation

is available in the model preparation stage; a multiple imputation method is also

available for pooling the results in a statistically principled manner from models

of users’ choice. The package is demonstrated in two real data applications and a

simulation study to assess methods for handling missing data.

KEYWORDS

multivariate meta-analysis, e�ect sizes, variance-covariance matrix, multiple imputation,
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1. Introduction

Multivariate meta-analysis (MMA) is a statistical technique of combining multiple effect

sizes, either of the same type or different types, from different studies to produce one

overall result. It allows for within-study dependence among effect sizes caused by the fact

that multiple outcomes are obtained from the same samples in the primary studies. This

dependence could increase the Type I error rate and lead to inaccurate estimates of study

effects (Becker, 2000; Nam et al., 2003; Riley, 2009; Jackson et al., 2011). Although there are

many R packages available for univariate meta-analysis, resources for MMA are limited in

terms of data preparation and visualization (Michael Dewey, 2021). There are available R

packages (see Table 1) designed for fitting MMA models, but they assume that the within-

study variance-covariance matrices of the effect sizes from all studies are pre-computed by

the users. Therefore, these packages may be unattractive in practice. For example, in some

MMA application articles, univariate meta-analysis is still adopted even though several effect
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sizes are extracted from the same study (Sebri et al., 2021; Watters

et al., 2021). Conducting statistically principled MMA confronts

challenges, which are as follows:

1. It is challenging to compute the covariances among effect sizes

for non-statisticians;

2. It lacks data visualization tools;

3. It suffers greatly from the missing data problem.

The availability of generalizable, user-friendly software

packages facilitates the incorporation of MMA into various

fields of science. The package metavcov aims to provide useful

tools for conducting MMA in R (R Core Team, 2016) with

examples of how it can provide aid for easy, efficient, and accurate

computer programs (Lu, 2017). It is not designed to replace a

parameter estimation package for MMA, such as mixmeta and

metaSEM (Aloe et al., 2014a,b; Gasparrini, 2019; Cheung, 2021),

but to provide additional specialized tools. It was initially released

in 2017 for computing variance-covariance matrices of effect

sizes and has attracted growing downloads as shown in Figure 1.

Its new version addresses all the above three points. For point

1, formulas and references are provided in the next section for

computing covariances. Tutorials are given to guide users to use

R functions that can accommodate different types of effect sizes

and their variance-covariance matrices for preparing desired input

arguments for packages mixmeta and metaSEM as examples.

Note that since the diagonal elements of the variance-covariance

matrix are the variances of the estimated effect sizes, this package

can also be used for preparing univariate meta-analysis.

For point 2, the metavcov package introduces a function

for confidence interval plots. Although forest plots are used for

displaying effect sizes from all studies and their overall estimator

in the univariate meta-analysis (Schwarzer, 2007; Boyles et al.,

2011; Sedgwick, 2015; Rücker and Schwarzer, 2021), they are

inappropriate for MMA because forest plots require a symbol on

each confidence interval that is proportional to the weight for each

study, but the weighting mechanism in MMA is too complex to

be visualized. Therefore, for MMA, the tool for displaying sample

effect sizes and their overall estimators is a confidence interval plot

without displaying weights. Studies with smaller standard errors

for the effect sizes would contribute more to the overall estimators,

and these effect sizes have narrower confidence intervals. Hence,

although a confidence interval plot does not directly reflect weights

for each study, it could provide quite sufficient information for

the users.

For point 3, missing data problems in meta-analysis are

often tackled through methods of omission, single imputation,

such as augmenting the missing values with the sample-size-

weighted mean or zero, multiple imputation, or integrating the

missing pattern into the estimation method such as Higgins et al.

(2008)’s two-stage method or methods employing a Bayesian

framework (Rubin, 1976; Sutton et al., 2000; Allison, 2001; Schafer

and Graham, 2002; Graham, 2009; Yuan and Little, 2009; Mavridis

and Salanti, 2013; Little and Rubin, 2019). Since MMA requires

far more statistical records from each study than univariate

meta-analysis, it is harder to get a complete list of effect sizes

and sample sizes. Missing data are often omitted by default

in packages mixmeta and metaSEM. Meanwhile, mixmeta

provides the function mixmetaSim to simulate responses that can

TABLE 1 R-packages for conducting MMA.

Package Unique features†

metavcov Preparing within-study variances and covariances; plotting

confidence intervals∗

mixmeta Multiple choices for mixed-effect model fitting including

maximum likelihood, restricted maximum likelihood,

method of moments, and variance components

metaSEM Meta-Analysis using Structural Equation Modeling; plotting

model structures

metafor rma.mv() accommodates repeatedly measured outcomesa

mmeta Fitting Bayesian models for binary outcomesb

metaCCA Detecting genetic association with shrinkage for high

dimensional outcomesc

CopulaREMADA Fitting copula mixed models for diagnostic test accuracy

studiesd

xmeta Testing and visualizing publication bias for bivariate

meta-analysise

†In general, all the listed R-packages can conduct MMA. This table highlights their unique

features, rather than major features. They have many features to explore.
∗While this study focuses on demonstrating the utility of metavcov for mixmeta and

metaSEM, it can provide similar benefits to other packages as well.
aViechtbauer (2010); bLuo et al. (2014); cCichonska et al. (2016); dNikoloulopoulos (2020);
eHong et al. (2020).

be potentially used for missing data imputation, and metaSEM

supports handling missing covariates using full information

maximum likelihood in meta-regression. However, these options

do not consider or distinguish different types of effect sizes in

detail. For example, when calculating the covariance between two

odds ratios, we need to know the sample size njkt that counts for

individuals reporting both outcomes, j and k, in the treatment

group t: if njkt is missing, one solution could be taking the minimal

value between sample size njt that counts for individuals reporting

outcome j and nkt for outcome k. Although njkt may be inaccurately

imputed, this solution could be better than removing the two effect

sizes. As a model preparation package, metavcov could handle

missing data problems more carefully by customizing functions

for different types of effect sizes case by case. Moreover, the

package also offers a function for multiple imputations for missing

data, a compact computer program that is extensible for different

estimation methods of users’ choice.

1.1. Models

In general, an MMA specifies the model at within-study and

between-study levels (Wei and Higgins, 2013b). For the within-

study level, let θ̂ i denote a vector of p observed effect sizes in the ith

study, which is assumed from a multivariate normal distribution:

θ̂ i ∼ MVN(θ i,6i) with 6i

=




s2i1 ρw12si1si2 · · · ρw1psi1sip
ρw21si1si2 s2i2 · · · ρw2psi2sip

...
...

. . .
...

ρwp1si1sip ρwp2si2sip · · · s2ip



, (1)
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FIGURE 1

Number of weekly downloads from CRAN for the three R packages useful for conducting MMA. The package metavcov was initially released in

2017, which is designed for preparing variance-covariance matrices of e�ect sizes for packages metaSEM and mixmeta that were released in 2015

and 2019, respectively (mixmeta is a new version of the package mvmeta which was initially released in 2011).

where θ i is the vector of underlying true effect sizes for study

i and 6i is the within-study variance-covariance matrix, which

is composed of the sampling variance of each effect size on the

diagonal, denoted by s2ij (j = 1, . . . , p) for the jth effect size,

and the within-study covariance of each pair of effect sizes on

the off-diagonal that reflects within-study correlation, denoted by

ρwst for the sth and tth effect sizes. Here, index i is omitted for

ρw.. for the reason of simplicity. In the next section, subscript i is

added for each study, whereas subscript w is omitted for simplicity

since the whole section is about within-study covariances. The

assumption for θ i is that the sample is from a multivariate normal

distribution that centers around the true effect sizes, denoted by

θ = (θ1, θ2, . . . , θp)
T , as

θ i ∼ MVN(θ ,�) with � =




τ 21 ρb12τ1τ2 · · · ρb1pτ1τp

ρb21τ1τ2 τ 22 · · · ρb2pτ2τp
...

...
. . .

...

ρbp1τ1τp ρbp2τ2τp · · · τ 2p



,

where � is the between-study variance-covariance matrix, which

is composed of between-study variance for each true effect size on

the diagonal and between-study covariance for each pair of effect

sizes on the off-diagonal that reflects between-study correlations

ρb... This model can also be written as θ̂ i ∼ MVN(θ ,6i + �).

By adding �, random effects between studies are accommodated.

When � = 0, the model is refered as a fixed effect model. For

meta-regression, it is written as yi ∼ MVN(Xiβ ,6i + �), where

the notation of θ̂ i is substituted by yi to follow the notation in

regression models.

To fit a fixed/random effect meta-analysis or meta-regression,

we have to calculate θ̂ i and 6̂i for study i = 1, . . . ,N. In

practice, 6̂i is computed from formulas involving θ̂ i to replace 6i

in equation (1), which is discussed in the next section. Although

most effect sizes and their variances/covariances in this articles

refer to the estimated values, we omit the circumflex in their

notations like other articles (Olkin, 1976; Wei and Higgins, 2013b;

Borenstein et al., 2021) for the sake of simplicity. Alternatively,

one could interpret those notations as the sample estimators from

each study conforming to the same formulas as the true underlying

random variables. For packages mixmeta and metaSEM, we

have to prepare (1) a matrix 2, which is an N by p matrix

with θ̂ i in each row and is contained via the argument data

in both packages, and (2) a matrix 4 which is an N by p(p +
1)/2 matrix that saves all the variances and covariances from 6̂i

for study i in each row, denoted by Si. Note that 6̂i is a p by

p symmetric matrix with p + (p − 1) + (p − 2) · · · + 1 =
p(p + 1)/2 unique elements. It is more convenient to store these

unique elements in a vector Si, which is organized as Si =
(s2i1, ρw21si1si2, . . . , ρwp1si1sip, s

2
i2, . . . , ρwp2si2sip, . . . , s

2
ip)

T from the

lower triagonal entries in 6̂i. 4 is contained in the argument v in

the metaSEM package. For the mixmeta package, 4 is contained

in the argument S, and S also accepts anN-dimensional list of p×p

matrices where 6̂i is stored.

This article describes how to estimate with-study variance-

covariance matrix 6i in the next section with details including

missing data solutions, where the notation θ̂ is replaced according

to different types of effect sizes, such as r for correlation coefficients

and δ for standardized mean differences. Furthermore, this article

provides a model estimation section with a data visualization

example and a section focusing on missing data problems with a

simulation study. Package summary and future work are given in

the end.
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2. Estimating the with-study
variance-covariance matrix 6i

2.1. Correlation coe�cient

Let rist denote the sample correlation coefficient that describes

the relationship between variables s and t in study i. Following the

notation by Olkin (1976), Becker (2009), and Ahn et al. (2015),

we have

var(rist) = (1− ρ2
ist)

2
/ni

for the variance of rist , and the covariance between rist and riuv is

cov(rist , riuv) =[.5ρistρiuv(ρ
2
isu + ρ2

isv + ρ2
itu + ρ2

itv)+ ρisuρitv

+ ρisvρitu

− (ρistρisuρisv + ρitsρituρitv + ρiusρiutρiuv

+ ρivsρivtρivu)]/ni, (2)

where ρi.. represents the corresponding population value. In

practice, ρi.. can be substituted by the observed sample correlation

ri.. (Ahn et al., 2015), and var(rist) and cov(rist , riuv) could be

calculated by setting the argument method = "each" in the

function r.vcov(). Note that the calculation of cov(rist , riuv) also

involes riut , ritv, . . . that could be missing in the real data, which

may make it impossible to conduct MMA for rist and riuv. In this

case, the argument method can be set as "average", so that

sample-size weighted mean from all available studies can be chosen

to replace ρi.. in equation (2), which was proposed by Cooper

et al. (2009). Furthermore, we can transform rist into the Fisher’s

z score as

zist =
1

2
ln

(
1+ rist

1− rist

)
.

When Fisher’s z scores are used, variances and covariances can be

computed as

var(zist) = 1/(ni − 3) and cov(zist , ziuv) = cov(rist , riuv)/

[
(1− ρ2

ist)(1− ρ2
iuv)

]
.

In addition to the arguments method and n as the sample size,

the R function r.vcov() needs another argument corflat to

input correlation coefficients from studies as an N by p matrix

where values of rist are saved in each row. The computed z

scores are saved in the output value ef, which is an N by

p matrix in the same format of argument corflat shown

in Figure 2 in blue. From r.vcov(), the output values ef,

list.vcov, and matrix.vcov are calculated Fisher’s z

scores and their covariances; the corresponding values in the

scale of Pearson’s correlation coefficients are stored in output

values r, list.rvcov, and marix.rvcov. In the next

subsections, the function mix.vcov() can be used for other

effect sizes, which also provides output valuesef,list.vcov and

matrix.vcov.

From r.vcov(), the output value list.rvcov is a list of

N matrices, in which list.rvcov[[i]] stores var(rist) and

cov(rist , riuv) in equation (2) for study i. The following shows the

example from Cooper et al. (2009) on page 388 as an illustration.

r <- matrix(c(-0.074, -0.127, 0.324, 0.523, -0.416, -0.414), 1)

n <- 142

computvcov <- r.vcov(n = n, corflat = r,

name = paste("C", c("st", "su", "sv",

"tu", "tv", "uv"), sep = ""),

method = "each")

round(computvcov$list.rvcov[[1]], 4)

Cst Csu Csv Ctu Ctv Cuv

Cst 0.0070 0.0036 -0.0025 -0.0005 0.0018 0.0009

Csu 0.0036 0.0068 -0.0025 -0.0002 0.0008 0.0017

Csv -0.0025 -0.0025 0.0056 0.0001 0.0000 -0.0003

Ctu -0.0005 -0.0002 0.0001 0.0037 -0.0013 -0.0013

Ctv 0.0018 0.0008 0.0000 -0.0013 0.0048 0.0022

Cuv 0.0009 0.0017 -0.0003 -0.0013 0.0022 0.0048

The z transformed correlation coefficients are saved in the output vector ef.

round(computvcov$ef, 4)

Cst Csu Csv Ctu Ctv Cuv

1 -0.0741 -0.1277 0.3361 0.5805 -0.4428 -0.4404

round(computvcov$list.vcov[[1]], 4)

Cst Csu Csv Ctu Ctv Cuv

Cst 0.0072 0.0037 -0.0029 -0.0008 0.0022 0.0011

Csu 0.0037 0.0072 -0.0028 -0.0003 0.0010 0.0021

Csv -0.0029 -0.0028 0.0072 0.0001 0.0000 -0.0004

Ctu -0.0008 -0.0003 0.0001 0.0072 -0.0022 -0.0022

Ctv 0.0022 0.0010 0.0000 -0.0022 0.0072 0.0032

Cuv 0.0011 0.0021 -0.0004 -0.0022 0.0032 0.0072
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FIGURE 2

Arrangement of e�ect sizes and their covariances in matrix and list formats using correlation coe�cients as an example. The output value

list.vcov is a list of N matrices, in which list.vcov[[i]] represents the matrix 6 i in Equation (1), where the element Vjk in the above figure

equals to ρwjksijsik in Equation (1) and Vjj equals to s2
ij
as the variance of θ̂ij. The output value matrix.vcov transforms list.vcov into an

N× p(p+ 1)/2 matrix. We could use ef and matrix.vcov as input arguments for packages mixmeta or metaSEM to fit an MMA model.

Note that for m outcomes, there are p = m × (m − 1)/2

correlation coefficients. Since the p by p variance-covariance matrix

is symmetric, there are p + (p − 1) + (p − 2) · · · + 1 = p(p +
1)/2 unique elements. It is more convenient to store these unique

elements in a vector so that if we have N studies, we could have an

N by p(p+ 1)/2 matrix that saves all the variances and covariances,

which can be obtained from the output value matrix.vcov. The

bottom row in Figure 2 is an illustration of how the variances and

round(computvcov$matrix.vcov, 4)

var_Cst cov_Cst_Csu cov_Cst_Csv cov_Cst_Ctu

[1,] 0.0072 0.0037 -0.0029 -0.0008

cov_Cst_Ctv cov_Cst_Cuv var_Csu cov_Csu_Csv

[1,] 0.0022 0.0011 0.0072 -0.0028

cov_Csu_Ctu cov_Csu_Ctv cov_Csu_Cuv var_Csv

[1,] -0.0003 0.0010 0.0021 0.0072

cov_Csv_Ctu cov_Csv_Ctv cov_Csv_Cuv var_Ctu

[1,] 0.0001 0.0000 -0.0004 0.0072

cov_Ctu_Ctv cov_Ctu_Cuv var_Ctv cov_Ctv_Cuv var_Cuv

[1,] -0.0022 -0.0022 0.0072 0.0032 0.0072

covariances are arranged in matrix and list formats. Following the

above code, we have

For missing values, we could impute a numeric value such as

zero via the argument na.impute.

computvcov <- r.vcov(n = 142,

corflat = matrix(c(-0.074, -0.127, 0.324,

0.523, -0.416, NA), 1),

na.impute = 0)
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computvcov$r

C1 C2 C3 C4 C5 C6

1 -0.074 -0.127 0.324 0.523 -0.416 0

By default, we have na.impute = NA without any

imputation. Under the default setting of method =

"average", the calculation of cov(rist , riuv) is still possible

even though it involes riut , ritv, . . . that could be missing. In

addition to imputing a specific number via na.impute,

we could also impute the sample-size-weighted mean from

those studies with complete records by setting the argument

na.impute = "average". Basically, na.impute =

"average" imputes the mean values for rist , zist and cov(rist , riuv),

while method = "average" imputes the mean values

only for cov(rist , riuv). These two arguments, na.impute =

"average" and method = "average", match the mean

imputation method and the method of omission illustrated

in Section 4.2 for the missing data problem. Note that all the

discussion about missing data in Sections 2 and 3 is about

missingness in within-study factors. Missingness in between-

study factors can only be handled in functions described in

Section 4.

2.2. Standardized mean di�erence

For the treatment group, let njt , nkt , and njkt denote the

numbers of participants who report outcome j, k, and both

outcomes j and k, respectively. Similarly, denote njc, nkc, and

njkc for the control group. These notations are used for all

the effect sizes for treatment comparison, including standardized

mean difference (SMD), mean difference, log odds ratio, log risk

ratio, and risk difference. There are two ways to estimate the

population SMD, Hedges’ g and the sample SMD. Denote the

sample mean score on outcome j in the treatment and control

groups as ȳjt and ȳjc, respectively, and the standard deviation of

the scores as sjt and sjc. Hedges (1981) proposed a minimum

variance unbiased estimator for the population SMD, which is

defined as

gj =
δj

J(vj)
with J(vj) =

Ŵ(vj/2)√
vj
2 Ŵ

( vj−1

2

) and vj = njt + njc − 2,

where

δj =
ȳjt − ȳjc

s
pool
j

with s
pool
j =

√√√√ (njt − 1)s2jt + (njc − 1)s2jc

njt + njc − 2
.

Wei and Higgins (2013b) derived the covariance between two

effect sizes in terms of Hedges’ g, denoted by gj and gk, as follows

cov(gj, gk) = ρ

( njkc

njcnkc
+

njkt

njtnkt

)
+

kjk

kjkk
ρ2δjδkJ(vj)J(vk)

√( vj

vj − 2
− 1

J(vj)
2

)( vk

vk − 2
− 1

J(vk)
2

)
,

where kk =
2nkt + 2nkc − 4

(nkc + nkt − 2)2
,

kj =
2njt + 2njc − 4

(njc + njt − 2)2
,

kjk =
2

(njc + njt − 2)(nkc + nkt − 2)

( njtnkt

njt + nkt − 1
+

njcnkc

njc + nkc − 1
− 2

)
,

and ρ is a simplified notation of ρwjk in Equation (1).

We could use the function smd.vcov() for calculating

Hedges’ g from SMD, which is stored in the output

value ef. The input arguments for δj, njt , and njc are d,

nt, and nc which are all N × p matrices in the same

arrangement as ef in Figure 2. The arguments for ρ, njkt ,

and njkc are r, n_rt, and n_rc which are all in a list

format with N p × p matrices. If njkt or njkc is missing,

the function automatically imputes njkt by the minimal

value between njt and nkt , and imputes njkc by the minimal

value between njc and nkc. This imputation method is

used for all the effect sizes for treatment comparison,

including SMD, mean difference, log odds ratio, log risk

ratio, and risk difference. The variances and covariances of

Hedges’ g are stored in matrix.vcov and list.vcov

in the same arrangement shown in the bottom row of

Figure 2.

The function smd.vcov() also provides

the formula in Olkin and Gleser (2009) for the

covariance of the sample SMD, δj, which is defined

as

cov(δj, δk) =
(nt + nc)ρ

ntnc
+

δjδkρ
2

2(nt + nc)
.

The results are stored in the output values matrix.dvcov

and list.dvcov in the same formats of matrix.vcov

and list.vcov, respectively. To demonstrate the usage of

smd.vcov(), the dataset in Geeganage and Bath (2010)

is applied using variables SMD_SBP and SMD_DBP, which

measure the systolic blood pressure (SBP, in mHg) and

diastolic blood pressure (DBP, in mHg). The correlation

between SBP and DBP is not recorded in the article,

so we impute it as 0.71 based on expert knowledge —

ideally, different correlation coefficients should be recorded
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from N different primary studies saved in a list of N

correlation matrices.

data(Geeganage2010)

## correlation coefficients between outcomes are missing in the data

## impute the correlation coefficient list based on expert knowledge

r12 <- 0.71

r.Gee <- lapply(1:nrow(Geeganage2010),

function(i){matrix(c(1, r12, r12, 1), 2, 2)})

computvcov <- smd.vcov(nt = Geeganage2010[,c("nt_SBP", "nt_DBP")],

nc = Geeganage2010[,c("nc_SBP", "nc_DBP")],

d = Geeganage2010[,c("SMD_SBP", "SMD_DBP")],

r = r.Gee,

name = c("SBP", "DBP"))

head(computvcov$ef) ## Hedge’s g

SBP DBP

1 -0.075002006 -0.19339306

2 0.043155405 -0.01610660

3 -0.242782681 -0.31689607

4 -0.097028863 -0.16608808

5 -0.004460966 -0.13364520

6 -0.286780271 0.08887979

head(computvcov$matrix.vcov) ## variances/covariances for Hedge’s g

var_SBP cov_SBP_DBP var_DBP

[1,] 0.15560955 0.11051462 0.15591453

[2,] 0.18256182 0.12959901 0.18254277

[3,] 0.03190808 0.02264927 0.03198210

[4,] 0.03115906 0.02212545 0.03119080

[5,] 0.01965510 0.01395547 0.01967717

[6,] 0.26813782 0.18910349 0.26680797

head(computvcov$matrix.dvcov) ## variances/covariances for SMD

var_SBP cov_SBP_DBP var_DBP

[1,] 0.15565024 0.11056752 0.15618509

[2,] 0.18257730 0.12959610 0.18254492

[3,] 0.03200824 0.02271517 0.03215273

[4,] 0.03117474 0.02213897 0.03123674

[5,] 0.01965512 0.01395583 0.01969852

[6,] 0.26896403 0.18897441 0.26688733

2.3. Mean di�erence and log odds ratio

Sometimes researchers prefer to keep the original scale of mean

differences (MD) instead of standardizing them into SMD, such as

body mass index (BMI) (Torloni et al., 2009; Winter et al., 2014) or

waist circumference (Czernichow et al., 2011; de Hollander et al.,

2012). For dichotomous outcomes such as mortality or morbidity,

a popular effect size measurement is the log odds ratio (logOR)

(Insua et al., 1994; Thompson et al., 1997). Following the notations

for SMD, Wei and Higgins (2013b) also derived the covariances for

MD and logOR as

cov(MDj,MDk) =
njkt

njtnkt
ρsjtskt +

njkc

njcnkc
ρsjcskc

and

cov(logORj, log ORk) =
ρnjkc

njcn2c

√( 1

Sjc
+ 1

Fjc

)( 1

Skc
+ 1

Fkc

)

+
ρnjkt

njtnkt

√( 1

Sjt
+ 1

Fjt

)( 1

Skt
+ 1

Fkt

)
,

where Sjt and Sjc are the numbers of participants with the outcome

j event in the treatment and control groups, respectively, and Fjt
and Fjc are the respective numbers without the event. Functions

md.vcov() and logOR.vcov() can be used to calculate

cov(MDj,MDk) and cov(logORj, logORk). Similar to r.vcov()

and smd.vcov(), the variance-covariance matrices are stored

in the output values matrix.vcov and list.vcov in matrix
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and list formats, and the calculated log odds ratios are stored in

the output value ef. Similar functions in the metavcov package

include lgRR.vcov() for log risk ratios and rd.vcov()

for risk differences. The function mix.vcov() is designed for

merging all of these functions whose details are demonstrated in

the next subsection.

The covariance between MD and logOR is calculated as

cov(MDj, logORk) =ρsjc
njkc

√
nkc

njcnkc

√( 1

Skc
+ 1

Fkc

)( 1

Skc
+ 1

Fkc

)

+ ρsjt
njkt

√
nkt

njtnkt

√( 1

Skt
+ 1

Fkt

)( 1

Skt
+ 1

Fkt

)
,

which can be obtained using the function md_lgor(), whose

output values include lgor that returns the computed log odds

ratio and v that returns the computed covariance.

md_lgor(r = 0.71, sd1t = 0.4, sd1c = 8,

n1c = 34, n2c = 35,

n1t = 25, n2t = 32,

s2c = 5, s2t = 8,

f2c = 30, f2t = 24)

$lgor ## computed log odds ratio (logOR)

[1] 0.6931472

$v ## computed covariance between the

MD and logOR

[1] 0.484266

2.4. Combination of e�ect sizes

In addition to the correlation coefficients, SMD, MD, and

logOR, the metavcov package also includes log risk ratio (logRR)

and risk difference (RD). The formulas for calculating their

covariances can be found in Table 1 in Wei and Higgins (2013b)

and the corresponding R functions can be found in Figure 3.

Similar to the function md_lgor() in the previous subsection,

we have lgor_lgrr() for covariance between logOR and logRR,

lgor_rd() for covariance between logOR and RD, md_lgrr()

for covariance between MD and logRR, md_rd() for covariance

between MD and RD, md_smd() for covariance between MD

and SMD, smd_lgor() for covariance between SMD and logOR,

smd_lgrr() for covariance between SMD and logRR, and

smd_rd() for covariance between SMD and RD. These functions

are designed for simple calculations to prepare for the function

mix.vcov(), which merges all of these functions by specifying

the input argument type with options "MD" for mean difference,

"SMD" for standardized mean difference, "logOR" for log odds

ratio, "logRR" for log risk ratio, and "RD" for risk difference.

Its output values ef, matrix.vcov, and list.vcov are the

calculated effect sizes and covariances in matrix and list formats.

To demonstrate the usage of mix.vcov(), the dataset in

Geeganage and Bath (2010) is applied again. There are four

outcomes, including systolic blood pressure (SBP, in mHg),

diastolic blood pressure (DBP, in mHg), death (D), and death

or disability (DD). Mean difference is used to measure the two

continuous outcomes SBP and DBP. Risk difference and log odds

ratio are chosen to measure the two dichotomous outcomes D

and DD. The type of their effect sizes is specified via a vector

for argument type in order. This order is applied to all the

other arguments. Note that certain arguments are not available

for specific outcomes. For example, arguments d, sdt, and sdc

are designed for effect sizes SMD or MD, which are not available

for logOR, logRR, or RD. Therefore, we have to impute NAs in

arguments d, sdt, and sdc for outcomes D and DD. Similarly,

we have to impute NAs for st and sc for outcomes SBP and

DBP. The correlation coefficients between these outcomes are

not recorded in the article, so we impute them based on expert

knowledge—ideally, different correlation coefficients should be

recorded from N different primary studies saved in a list of N

correlation matrices. The example code is as follows.

data(Geeganage2010)

## correlation coefficients between outcomes are missing in the data

## impute the correlation coefficient list based on expert knowledge

r12 <- 0.71

r13 <- 0.5

r14 <- 0.25

r23 <- 0.6

r24 <- 0.16

r34 <- 0.16

r <- vecTosm(c(r12, r13, r14, r23, r24, r34))

diag(r) <- 1

mix.r <- lapply(1:nrow(Geeganage2010), function(i){r})

attach(Geeganage2010)

computvcov <- mix.vcov(type = c("MD", "MD", "RD", "lgOR"),

d = cbind(MD_SBP, MD_DBP, NA, NA),

sdt = cbind(sdt_SBP, sdt_DBP, NA, NA),

sdc = cbind(sdc_SBP, sdc_DBP, NA, NA),

nt = cbind(nt_SBP, nt_DBP, nt_DD, nt_D),

nc = cbind(nc_SBP, nc_DBP, nc_DD, nc_D),

st = cbind(NA, NA, st_DD, st_D),

sc = cbind(NA, NA, sc_DD, sc_D),
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FIGURE 3

Functions for computing covariances between di�erent types of e�ect sizes using metavcov. Functions with names connected by dot compute

e�ect sizes of the same type (except mix.vcov) and work with multiple studies, while functions with names connected by underscore compute two

e�ect sizes of di�erent types and only work with one study for simple calculation.

r = mix.r,

name = c("MD.SBP","MD.DBP","RD.DD","lgOR.D"))

## save different effect sizes in y

y <- computvcov$ef

head(y)

MD.SBP MD.DBP RD.DD lgOR.D

1 -2.47 -3.44 0.00000000 -1.0986123

2 1.61 -0.34 0.18750000 0.5959834

3 -8.16 -6.44 0.02554455 0.5892102

4 -3.17 -3.41 0.04000000 0.4444945

5 -0.15 -2.39 0.01920750 0.1000835

6 -9.83 1.93 -0.25000000 -0.5108256

computvcov$list.vcov[[1]]

MD.SBP MD.DBP RD.DD lgOR.D

MD.SBP 87.9883122 34.8140903 0.92452778 2.27820442

MD.DBP 34.8140903 27.8514100 0.62070000 0.79071907

RD.DD 0.9245278 0.6207000 0.04062500 0.02741618

lgOR.D 2.2782044 0.7907191 0.02741618 1.02083333

$# save variances/covariances of all the effect sizes in a matrix S

S <- computvcov$matrix.vcov

S[1, ]

var_MD.SBP cov_MD.SBP_MD.DBP cov_MD.SBP_RD.DD cov_MD.SBP_lgOR.D

1 87.98831 34.81409 0.9245278 2.278204

var_MD.DBP cov_MD.DBP_RD.DD cov_MD.DBP_lgOR.D var_RD.DD

1 27.85141 0.6207 0.7907191 0.040625

cov_RD.DD_lgOR.D var_lgOR.D

1 0.02741618 1.020833
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The matrices y and S in the above code can be used as

input arguments for packages mixmeta and metaSEM, which is

demonstrated in the next section. After computing within-study

covariances, the next step is model fitting for estimating the overall

effect sizes, potentially with result visualizations (see Figure 4).

3. Estimating the overall e�ect sizes

3.1. Generalized least squares method

The GLS method (Berkey et al., 1996) enables us to estimate

the overall effect size θ from the observed θ̂ i and 6i from all

the N studies. It is similar to the more familiar ordinary least

squares method, but it allows the data from which parameters

are estimated to have unequal population variances and nonzero

covariances. Becker (2009) have shown that the GLS estimators

are also maximum likelihood estimators. This section demonstrates

the GLS procedure in order that the next section could present

handling the missing data problem under its framework.

First, let TNp×1 = (θ̂11, θ̂12, . . . , θ̂1p, θ̂21, θ̂22, . . . , θ̂2p, . . . ,

θ̂i1, θ̂i2, . . . , θ̂ip, . . . , θ̂N1, θ̂N2, . . . , θ̂Np)
′ be a rearrangement of

elements in θ̂ i from all the N studies. Given an error vector,

denoted by eNp×1, the relationship between the population

parameter θ = (θ1, θ2, . . . , θp)
′ and T is

TNp×1 = XNp×pθ+eNp×1 =




1 0 0 · · · 0 0

0 1 0 · · · 0 0
...
...
. . .

...
...

...

0 0 · · · 1 · · · 0
...
...

...
...

. . .
...

0 0 · · · 0 0 1

... ...
1 0 0 · · · 0 0

0 1 0 · · · 0 0
...
...
. . .

...
...

...

0 0 · · · 1 · · · 0
...
...

...
...

. . .
...

0 0 · · · 0 0 1







θ1

θ2
...

θj
...

θp




+




e11
e12
...

e1j
...

e1p
...
eN1

eN2

...

eNj
...

eNp




,

(3)

where X is an Np × p matrix created by stacking N p-dimensional

identity matrices.

Assuming the errors in e are normally distributed with a zero

mean vector 0 and a variance-covariance matrix 9 , which is a

blockwise diagonal matrix with 6i in its diagonal:

9 =




61 0 0 · · · 0 0

0 62 0 · · · 0 0

...
...

. . .
...

...
...

0 0 · · · 6i · · · 0

...
...

...
...

. . .
...

0 0 · · · 0 0 6N




.

Note that in a random effect model, the matrix in its diagonal is

6i + �.

The GLS estimator of θ and its variance Var(θ̂) are given by

θ̂ = (X′9−1X)−1X′9−1T and Var(θ̂) = (X′9−1X)−1. (4)

A test of homogeneity with the null hypothesisH0: θ1 = θ2 = · · · =
θj = · · · = θp can be conducted via the Q statistic (Higgins and

Thompson, 2002; Sera et al., 2019):

Q = θ̂
′
[9−1 − 9−1X(X′9−1X)−1X′9−1]θ̂ ,

which follows a Chi-square distribution with df = (N − 1) × p

degrees of freedom. The Q statistic generates the I2 statistic,

I2 = max{Q− df

Q
, 0},

which quantifies the amount of heterogeneity as the proportion of

total variation related to sampling error. A value of 0% indicates

no observed heterogeneity, and larger values show increasing

heterogeneity (Higgins et al., 2003). We can use the function

metafixed() for conducting a fixed-effect MMA, which is

equivalent as setting method = "fixed" in mixmeta() using

the mixmeta package. However, the zero heterogeneity fixed effect

model is almost never appropriate for psychology.

For random effect models, methods including the maximum

likelihood and the restricted maximum likelihood methods

(Harville, 1977; Gasparrini et al., 2012; Sera et al., 2019), the

method of moments (Chen et al., 2012; Jackson et al., 2013), and

the method of two stages proposed by Liu et al. (2009) can be

used to estimate � and θ . These methods can be adopted in

the mixmeta package by specifying method as "ml", "reml",

"mm", or "vc" in mixmeta(). The metaSEM package adopts

the maximum likelihood and the full information maximum

likelihood methods (Cheung, 2021) in functions meta() and

metaFIML(), respectively. When the effect sizes of interest are

correlation coefficients, we can use metaSEM for conducting

meta-analytic structural equation modeling (Cheung, 2008, 2009,

2013, 2015). A simple example for the metaSEM package is

demonstrated as follows using y and S obtained via the output

values ef and matrix.vcov from the previous code. For the

maximum likelihood estimation method, we have

library(metaSEM)

MMA_RE <- summary(meta(y = y, v = S,

data = data.frame(y,S)))

For the restricted maximum likelihood (REML) estimation

method, we have

library(metaSEM)

MMA_RE <- summary(reml(y = y, v = S,

data = data.frame(y,S)))

The argument data in the above functions is unnecessary. This is

to show that functions mixmeta(), meta(), and reml() have

the argument data so that covariates or predictors can be added

for meta-regression.

In summary, we can use the function r.vcov() for

correlation coefficients and mix.vcov() for other effect

sizes from the metavcov package to calculate effect sizes
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FIGURE 4

Illustration of the workflow for conducting MMA using the R packages introduced.

and covariances, which are stored in output values ef and

matrix.vcov. Then, we can use ef and matrix.vcov to

conduct a random effect MMA via mixmeta or metaSEM. Note

that regardless of the chosen function, estimating the full variance-

covariance matrix � can be difficult unless N is large, because

there are many parameters involved. Therefore, it is often wise

to consider constrained models for the variance-covariance matrix

� (McShane and Böckenholt, 2022).

3.2. Data visualization

The new version of metavcov offers a plot function

plotCI() for displaying confidence intervals of effect sizes from

each study and the overall estimators. The difference between a

forest plot and a confidence interval plot is that a forest plot

requires a symbol on each confidence interval that is proportional

to the weight for each study (Schwarzer, 2007; Boyles et al.,

2011; Sedgwick, 2015; Rücker and Schwarzer, 2021). Because the

weighting mechanism in MMA is too complex to be visualized,

such a proportional symbol is omitted. Although a confidence

interval plot does not directly reflect weights for each study, it could

provide sufficient information for users because effect sizes with

narrower confidence intervals often contribute more to the overall

estimators. Following the code from the previous subsection, an

example for the function plotCI() is given below.

obj <- MMA_FE

plotCI(y = computvcov$ef, v = computvcov$list.vcov,

name.y = c(

"Correlation: cognitive anxiety & somatic anxiety\n(C1)",

"Correlation: cognitive anxiety & self concept\n(C2)",

"Correlation: cognitive anxiety & athletic performance\n(C3)",

"Correlation: somatic anxiety & self concept\n(C4)",

"Correlation: somatic anxiety & athletic performance\n(C5)",

"Correlation: self concept & athletic performance\n(C6)"),

name.study = Craft2003$ID,

y.all = obj$coefficients[,1],

y.all.se = obj$coefficients[,2],

up.bound = Inf, low.bound = -Inf)

We could also set obj <- MMA_RE in the above code where

MMA_RE was sepecified in the previous subsection from a random

effect model using the package mixmeta or metaSEM. The result

is shown in Figure 5.

4. The missing data problem

We can conveniently specify the predictors or missing values

uing the design matrix X in Equation (3). First, let X be informally

denoted as X = (X(1),X(2), . . . ,X(i), . . . ,X(N))′ for simplicity,

where X(i) is a p-dimensional identidy matrix in Equation (3). If

we want to fit a meta-regression model (Van Houwelingen et al.,

2002) with covariates or predictors xi1, xi2 . . . from each study, we

can rewrite X(i) as

X(i) =




1 0 0 · · · 0 0 xi1 xi2 . . .

0 1 0 · · · 0 0 xi1 xi2 . . .

...
...
. . .

...
...

...
...

...
...

0 0 · · · 1 · · · 0 xi1 xi2 . . .

...
...

...
...

. . .
...

...
...

...

0 0 · · · 0 0 1 xi1 xi2 . . .




,

and θ as (β01,β02, . . . ,β0p,β11,β12, . . . ,β1p,β21,β22, . . . ,β2p, . . . )
′.

In R, we could use mixmeta or metaSEM to conduct meta-

regression. Following the code from the previous section, we could

use the code below assuming the predictor is the percentage of male

participants in each study.

summary(mixmeta(cbind(C1, C2, C3, C4, C5, C6)

~ p_male, S = S,

data = data.frame(y,p_male

= Craft2003$p_male),

method = "reml"))

For the missing data problem, if the jth observed effect size is

missing in study i, we could simply delete the jth row in X(i). For
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example, we expect C1, C2, . . . , C6 to be observed for all studies

in the Craft et al. (2003) meta-analysis, where X(i) = I6 for X

in Equation (3). However, if C5 is missing in study i, then we

could input

X(i) =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1




in the design matrix X. This method of omission for missing values

in MMA is different from other regression functions such as those

performed through lm() or glm() in R. Specifically, partially

missing outcomes do not prevent the study from contributing to

estimation. In addition to this omission procedure, we can also

impute missing data by zero or the sample-size-weighted mean

of observed effect sizes. Another way is to integrate the missing

pattern in the estimation method such as Higgins et al. (2008) two-

stage method or methods employing a Bayesian framework (Sutton

et al., 2000; Yuan and Little, 2009). Although these techniques are

not yet available for the current package, they may well become

the methods of choice in future. Single imputation for missing

effect sizes is available through the input argument na.impute

in functions r.vcov() and mix.vcov(). Another option is

multiple imputation.

4.1. Multiple imputation

Multiple imputation (MI) is a general approach that allows

for the uncertainty about the missing data by generating

several different plausible imputed datasets and appropriately

combining results obtained from each of them (Allison, 2001;

Schafer and Graham, 2002; Graham, 2009; Mavridis and Salanti,

2013; Little and Rubin, 2019). There are three basic phases

for MI:

1. Imputation Phase: Themissing data are imputed from simulated

values drawn from some distributions. This process is repeated

M times.

2. Analysis Phase: The same analysis is performed for each of the

M complete datasets.

3. Pooling Phase: TheM results are pooled to obtain the final result

in some fashion.

Since MI methods involve recalculating the variance-

covariance matrices for the studies with missing values, the

new version of metavcov includes a function metami() that

can conduct MI automatically. For the imputation phase, this

function imports the package mice published by Van Buuren

and Groothuis-Oudshoorn (2011) that imputes incomplete

multivariate data by chained equations. The mice package is

also recommended by the metafor package for univariate

meta-analysis Viechtbauer (2021). For the analysis phase, all the

functions mentioned in the previous section are accommodated,

including metafixed(), mixmeta(), and meta(). The

pooling phase is performed via Rubin’s rules (Rubin, 1987; Barnard

and Rubin, 1999; Van Buuren and Groothuis-Oudshoorn, 2011).

Let θ̂∗m be the estimated coefficient from the mth imputed dataset

for one of the p dimensions in θ , where m = 1, . . . ,M. The pooled

coefficient from MI, denoted by θ̄ , is simply just an arithmetic

mean of the individual coefficients estimated from each of the M

analyses. We have

θ̄ =
∑M

m=1 θ̂∗m
M

.

Estimation of the standard error for each variable is a little more

complicated. Let VW be the within-imputation variance, which is

the average of the variance of the estimated coefficient from each

imputed dataset:

VW =
∑M

m=1 Var(θ̂∗m)

M
,

where Var(θ̂∗m) is the diagonal element of Var(θ̂) calculated from

Equation (4) using the imputed dataset. Let VB be the between-

imputation variance, which is calculated as

VB =
∑M

m=1(θ̂∗m − θ̄)2

M − 1
.

From VW and VB, the variance of the pooled coefficients is

calculated as

Var(θ̄) = VW + VB +
VB

M
.

The above variance is statistically principled since VW reflects the

sampling variance and VB reflects the extra variance due to the

missing data.

Examples of metami() are provided as follows for the data

from the Craft et al. (2003) meta-analysis in the previous section.

## prepare a dataset with missing values

Craft2003.mnar <- Craft2003[, c(2, 4:10)]

Craft2003.mnar[sample(which(Craft2003$C4

< 0), 6), "C4"] <- NA

## prepare input arguments for metami()

dat <- Craft2003.mnar

n.name <- "N"

ef.name <- c("C1", "C2", "C3", "C4",

"C5", "C6")

The number of imputations is specified through the argument

M. The argument vcov controls the function to be used for

computing the variance-covariance matrices for the effect sizes,

whose options are vcov="r.vcov" for correlation coefficients

and vcov="mix.vcov" for all the other types of effect sizes.

For a random effect model, we can specify the argument func

as "mixmeta", which allows the function mixmeta() from the

package mixmeta to be used for MMA. For the argument func

= "mixmeta", we have to specify formula and method for

mixmeta().

library(mixmeta)

o2 <- metami(dat, M = 20, vcov = "r.vcov",

n.name, ef.name,

formula = as.formula(cbind
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FIGURE 5

Confidence interval plots for e�ect sizes from the Craft et al. (2003) meta-analysis.

(C1, C2, C3, C4, C5, C6)~1),

func = "mixmeta",

method = "reml")

We could also use func = "meta" in the above code which

adopts the function meta() from the metaSEM package, for

which it is unnecessary to specify arguments formula and

method.

For meta-regression, we can specify the name of the predictors

in the argument x.name:

library(metaSEM)

o3 <- metami(dat, M = 20, vcov = "r.vcov",

n.name, ef.name, x.name =

"p_male",

func = "meta")

If we specify func = "mixmeta" in the above

code, we also have to add p_male in the

argument formula.
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FIGURE 6

Bias and MSE results from simulation experiments using the data from the Craft et al. (2003) meta-analysis. Missing values in C4 were simulated in an

MNAR pattern with 33% missing data; there is no missing value in C1, C2, C3, C5, and C6. The multiple imputation method conducted by the

function metami from metavcov works better than other methods and M = 20 seems su�cient for this specific scenario.

4.2. A simulation study for Craft et al.’s
meta-analysis

The metavcov package provides several solutions for

handling missing data. To compare these methods and find

the influence of M in the MI method, a simulation study is

conducted using the settings in the previous section. There are

three missing data mechanisms, including missing completely

at random (MCAR), missing at random (MAR), and missing

not at random (MNAR). MCAR refers to the situation that

neither the variables in the dataset nor the unobserved values

of the variable itself predict whether a value will be missing;

MAR refers to the circumstance that other variables (but not

the variable with missing values itself) in the dataset can

predict the missingness of a given variable; a variable is said

to be MNAR if the value of the unobserved variable itself

predicts missingness (Allison, 2001; Schafer and Graham, 2002;

Graham, 2009; Mavridis and Salanti, 2013; Little and Rubin,

2019).

The code in the previous section simulated a missing data

pattern of MNAR in C4, where only negative values were possibly

missing. The MNAR scenario is the most challenging of the three.

To check the performance of different methods, this procedure was

replicated 100 times (B = 100). For the MI method, the number

of imputations M was varied as 10, 20, 50, and 100. In addition

to MI, methods of omitting the missing values (omission with

mean imputed covariances) and single imputation with sample-

size-weighted means (mean imputation) were also included. Recall

that from equation (2), missingness in C4 could cause problems

for the calculation of covariances between two other correlation

coefficients, which makes an MMA impossible. Therefore, sample-

size-weighted mean is used for imputing missing values in C4 for

calculating covariances, which is achieved by specifying method

= "average" in r.vcov().

Bias and mean squared error (MSE) were used to evaluate

the methods for which the true parameter, denoted by θRE, was

defined as the estimated coefficient from the complete dataset

using the function mixmeta() from the mixmeta package
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with its argument method = "reml". Let θ̄b be the estimated

parameter using the imputed dataset from realization b. The bias

and MSE were estimated by

B̂ias(θRE) =
∑B

b=1(θ̄b − θRE)

B
and M̂SE(θRE) =

∑B
b=1(θ̄b − θRE)2

B
.

In this dataset, we have N = 18 studies and the missing percentage

in C4 is 33%. The effect sizes were transformed into Fisher’s

z scores. The R code for this simulation can be found in the

supplementary material.

The simulation results are displayed in Figure 6. The results

were based on Fisher’s z scores. All methods worked well since

the values of bias were all roughly smaller than 0.002. For bias,

the method of omission provided a smaller bias, but the results

were highly variable. Mean imputation and MI methods gave more

consistent results. Because smaller values were more likely to be

missing, imputation methods tended to impute larger values based

on observed data, generating positive bias. The mean imputation

method had a higher bias, which caused higher values of MSE. The

results showed that MI methods perform the best. Interestingly,

the number of imputations M does not affect the result much.

It seems that M = 20 is sufficient. Although missingness in C4

could influence the estimation of other effect sizes in terms of both

bias and MSE, such influences are on a small scale. Overall, the

missing value solutions from metavcov seem promising. Note

that this conclusion is very specific to this dataset in this particular

missingness pattern. The purpose of this section is to provide code

(see supplemental data) for the users to conduct simulations for

their own data to get some ideas of parameter settings and perhaps

gain some confidence.

5. Summary and future work

The metavcov package provides useful tools for

conducting MMA with examples in R under a generalizable,

statistically principled analytical framework. It is very flexible in

accommodating functions for different effect sizes and functions

for different coefficient estimation methods. Compared with its

earlier versions, functions have more consistent output values: all

themodel preparation functions, such asr.vcov andmix.vcov,

store the outputs in ef, list.vcov, and matrix.vcov. It is

very practical with functions for data visualization and handling

missing values. As well as being statistically principled, it is helpful

in practice that once the model has been specified, MI can be

conducted automatically. In addition to end-users, developers can

easily extend this package to other existing state-of-the-art trust

models (Hedges et al., 2010; Chen et al., 2015, 2017; Tipton, 2015;

Pustejovsky and Tipton, 2018).

The MI method was examined in an MNAR scenario from a

simulation study. The MNAR scenario is very realistic for meta-

analysis, which is also known as publication bias. Since published

articles tend to show significant findings or be in favor of positive

results, it is possible that imputing the missing effect sizes by

zero could balance the findings and outperforms the MI method.

The current version integrates the mice package for MI. Other

packages for modeling missing data such as Amelia (Honaker

et al., 2011) and mi (Su et al., 2011) may also be of users’

choice for future work. Different estimation methods for random

effect models, such as the method of moments or Bayesian

approaches (Wei and Higgins, 2013a), should be compared as well

for simulation studies. However, due to space limitations, they are

not demonstrated in this article. From a theoretical perspective,

no work has been done to calculate the covariances between

correlation coefficients and other types of effect sizes, such as log

odds ratio, which is also one of our future goals.
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