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Abstract
Traditional variable importance measures quantify overall feature contributions but often 
overlook individual-level heterogeneity. Several new procedures attempt to address this 
limitation but remain model dependent and may introduce biases. We propose individu-
al variable priority (iVarPro), an extension of the Variable Priority (VarPro) framework, 
which uses rule-based, data-driven partitioning to estimate the gradient of the conditional 
mean function. By focusing on gradients, iVarPro captures how small perturbations in a 
variable influence an individual’s outcome, providing a more precise and interpretable 
measure of importance. To demonstrate its advantages, we conducted simulations and ana-
lyzed a real-world survival dataset. Our results show that iVarPro more accurately captures 
the true functional relationship by flexibly leveraging local samples.

Keywords  Conditional expectation · Local gradient (partial derivative) · Individual 
variable importance · Release region · Variable selection

1  Introduction

Understanding the individual importance of variables is a crucial yet underexplored aspect 
of statistical modeling and machine learning. Traditional methods quantify variable effects 
at the population level but often fail to capture heterogeneity across individuals. In many 
applications, particularly those requiring personalized decisions, it is insufficient to deter-
mine whether a variable is important on average; rather, we must understand how it influ-
ences specific predictions. For example, a machine learning model may predict a patient’s 
risk of heart disease, identifying well-known clinical factors such as age, cholesterol, and 
smoking status as key predictors. Yet, for a specific patient, their elevated risk may be driven 
primarily by a biomarker, even if that biomarker has low average importance across the 
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population. Such individual-level effects provide finer interpretability and are essential for 
tailoring treatment strategies and enabling precision decision-making.

A widely used approach for assessing variable importance is SHAP (Shapley Additive 
Explanations)  (Lundberg and Lee 2017), which attributes feature contributions to model 
predictions using cooperative game theory. Unlike traditional population-level methods, 
SHAP provides both population- and individual-level assessments, making it a flexible 
tool for understanding local feature effects. Nevertheless, its interpretation remains model-
dependent, as it relies on the model’s internal feature interactions and the choice of back-
ground distribution.

Another approach, permutation importance, was originally introduced for random for-
ests by Breiman (2001). It measures the change in prediction error when a variable is ran-
domly permuted, providing insight into a feature’s contribution to predictive performance. 
Although typically viewed as a population-level measure, permutation importance can also 
be adapted for individual-level assessments. In random forests, individual variable impor-
tance is determined by averaging the change in out-of-bag (OOB) prediction error for each 
instance across trees. Still, a key limitation of permutation importance is that it is inherently 
model-dependent and can introduce biases, particularly in the presence of correlated fea-
tures (Strobl et al. 2007).

To further enhance individual importance estimation, methods such as LIME (Local 
Interpretable Model-Agnostic Explanations)  (Ribeiro et  al. 2016) and other localized 
techniques (Aas et al. 2021) have been developed. However, LIME perturbs feature val-
ues synthetically to approximate local model behavior, which can produce unrealistic data 
points and misrepresent true model dynamics. Case-Specific Random Forests (CSRF) (Xu 
et al. 2016) estimate individual variable importance using a leave-one-out forest approach, 
improving on permutation methods by assessing importance through prediction accuracy 
changes with local feature space partitions. Another method recently introduced by Dai et 
al. (2024) quantifies individual importance through mean squared error and local functional 
derivatives of the prediction function. Additionally, Winn-Nuñez et al. (2024) proposed a 
unified, prediction-based approach for local and global variable importance in nonlinear 
regression models, broadening applicability to complex modeling frameworks.

Despite their focus on individual-level interpretability, these methods share common 
limitations: they are largely model-dependent and can introduce biases. More broadly, 
prediction-based approaches may lack robustness across applications, as their reliability 
depends on the model’s structure, feature dependencies, and, in some cases, the prediction 
error metric used to define importance.

Recent developments in feature effect estimation highlight the growing demand for 
local interpretability in applied machine learning. Methods such as Individual Conditional 
Expectation (ICE) curves  (Goldstein et  al. 2015) and Accumulated Local Effects (ALE) 
curves (Apley and Zhu 2020) allow practitioners to visualize the marginal impact of indi-
vidual features on a prediction by varying that feature while holding others fixed or averag-
ing out their effects. These approaches are particularly relevant in model explanation and 
counterfactual analysis, where understanding heterogeneity in predictions is critical. While 
our focus is not on counterfactual reasoning per se, the conceptual overlap is significant: 
both ICE/ALE aim to understand a feature’s influence locally.

In previous work (Lu and Ishwaran 2024), we described Variable Priority (VarPro), a 
model-independent method designed to mitigate bias in variable importance estimation. 
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VarPro defines localized feature space regions using data-driven splitting rules and com-
putes importance scores from these. By relying solely on observed data, VarPro avoids the 
biases introduced by permutations and artificial data and ensures a more robust approach to 
variable selection. Although VarPro addresses bias in population-level importance, it does 
not account for individualized effects. To bridge this gap, we introduce individual-VarPro 
(iVarPro), which shifts the focus to individual-level variable importance by explicitly esti-
mating the gradient of the conditional mean function ψ and defining it as the individual 
variable importance value. This approach is particularly valuable in precision medicine, 
where subtle variations in patient characteristics can lead to markedly different prognoses. 
A large gradient indicates that even minor changes in a variable significantly impact an 
individual’s prediction, whereas a near-zero gradient suggests minimal influence, regardless 
of its population-level significance.

The primary objective of this paper is to introduce and describe the iVarPro procedure 
and demonstrate its effectiveness, particularly in biomedical applications. Section 2 pro-
vides a detailed description of iVarPro, including its local linear regression approach for 
gradient estimation and methodological enhancements designed to improve stability and 
accuracy. Section 3 presents empirical evidence of iVarPro’s capabilities. We begin with a 
regression simulation study evaluating its performance under complex gradient structures 
and correlated feature settings, comparing its effectiveness to existing procedures in both 
low- and high-dimensional settings. We further illustrate iVarPro’s ability in a synthetic sur-
vival simulation. Section 4 applies iVarPro to a real-world survival dataset of patients who 
underwent treadmill exercise testing for suspected coronary artery disease. This serves as a 
real-world test case to distinguish variables with strong population-level effects from those 
with weaker but potentially meaningful individual contributions. Finally, Sect. 5 discusses 
our findings and their implications for precision medicine.

2  The iVarPro method

SHAP (Lundberg and Lee 2017) and LIME (Ribeiro et al. 2016) are widely used methods 
for understanding the effect of a feature on a model. However, in both approaches, a fea-
ture’s importance value represents its contribution to the model’s prediction for a specific 
instance relative to a baseline value, which may lack direct clinical relevance in precision 
medicine. Additionally, these methods assume local additivity in feature contributions, but 
their importance values do not imply direct effects. That is, a negative importance value for 
feature s in case i does not necessarily indicate that increasing feature s will decrease the 
outcome for case i.

To address these limitations, we propose iVarPro, which defines feature importance 
based on the local gradient of each feature, providing a more interpretable measure. The 
gradient quantifies how small perturbations in a variable influence an individual’s predicted 
outcome, serving as a natural measure of sensitivity. Unlike SHAP, which fits a global pre-
diction model, iVarPro constructs a local predictive model similar to LIME but estimates 
feature effects using local gradients rather than surrogate approximations.

A key challenge in local modeling is the small sample size, particularly in high-dimen-
sional feature spaces. Increasing the sample size for fitting a model at a given instance i 
inevitably incorporates samples that are farther from i, reducing local relevance. To mitigate 

1 3

Page 3 of 28    407 



M. Lu, H. Ishwaran

this, we employ tree-based partitioning rules to define the local sample for instance i, select-
ing data points within the same terminal node of a decision tree. While this approach results 
in a small sample size, we introduce the notion of a release region, where the boundary 
constraint on feature s is relaxed when estimating its importance. This relaxation achieves 
two key objectives: 

1.	 Increasing the effective sample size.
2.	 Enabling the estimation of the gradient of feature s using simple linear regression.

As will be explained shortly, an important aspect of iVarPro is that all other features remain 
constrained within the rule-defined local region, ensuring locality for instance i without 
requiring a multivariate regression model. Furthermore, this approach does not impose lin-
earity assumptions on the remaining features. The key distinction between LIME and iVar-
Pro is that iVarPro estimates feature importance using signficantly smaller local samples and 
computes feature gradients along one coordinate direction at a time.

In the following sections we describe the iVarPro method in detail. To set the stage, we 
first introduce some notation that will be helpful in laying out our proposed method.

Let ψ(x) = E(ϕ(Y )|x) be the unknown target function for the feature vector 
x = (x(1), . . . , x(p))T , where Y is the outcome and the choice of ϕ depends on the spe-
cific problem. Examples of ψ include the conditional mean in regression, class prob-
abilities in classification, and survival probabilities in time-to-event analysis. Denote by 
x(S) = {x(s)}s∈S  the restriction of x to coordinates s ∈ S for a set S ⊂ {1, . . . , p}. The 
objective of population variable selection is to identify the smallest set of signal variables 
S0 such that ψ(x) depends only on x(S0) and is conditionally independent of the noise vari-
ables N = {1, . . . , p} \ S0.

In contrast, when considering individual variable importance, the focus shifts to local 
behavior. Our approach is to examine the gradient of ψ, and our aim is to estimate:

	
∇ψ(x) =

(
∂ψ(x)
∂x(1) , . . . ,

∂ψ(x)
∂x(p)

)T

:=
(
g(1)(x), . . . , g(p)(x)

)T
.

The values g(s)(x) represent the individual variable importance for features x(s), s = 1, . . . , p.

2.1  VarPro: using rules to obtain local gradients

Now we describe the iVarPro procedure in detail, beginning with a review of VarPro. A 
formal summary of the full iVarPro procedure is provided later in Algorithm 1.

VarPro defines feature space regions using data-driven rules, where local estimates of the 
target function are computed. The importance of a variable s ∈ {1, . . . , p} is assessed by 
comparing estimates within a rule’s region R to those in its corresponding release region, 
defined as the region R expanded where constraints on x(s) are removed. These rules are 
constructed using random trees, with terminal nodes representing small rectangular regions 
R in the feature space (Lu and Ishwaran 2024). A key advantage of VarPro is its consistency 
property for selecting signal variables, ensuring that the constructed rules are based on fea-
tures relevant to the target conditional mean ψ. This, in turn, enhances the ability to obtain 
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accurate gradient estimates, as the regions defined by these rules are more likely to reflect 
meaningful variations in ψ.

To harness this framework for iVarPro individual variable importance, we exploit the 
fact that each terminal node R provides a localized approximation of ψ. Since values within 
R are close with respect to a distance measure defined on the signal variables, we assume a 
common gradient value across all x ∈ R. Specifically, let x0 := x0(R) denote the centroid 
of R, and assign its gradient to all cases in R.

To define the gradient at x0 = (x(1)
0 , . . . , x

(p)
0 )T  along coordinate s, let ψ(s)

R (z) represent 
the evaluation of ψ at x0, with the s-th coordinate perturbed by an increment z:

	 ψ
(s)
R (z) = ψ(x(1)

0 , . . . , x
(s−1)
0 , x

(s)
0 + z, x

(s+1)
0 , . . . , x

(p)
0 ).

By construction, ψ(s)
R (0) = ψ(x0), and the gradient of ψ at x0 along coordinate s is formally 

given by

	
g

(s)
R := g

(s)
R (x0) = lim

z→0

ψ
(s)
R (z) − ψ

(s)
R (0)

z
.

Since ψ depends only on signal coordinates s ∈ S0, the gradient is zero for noise coordi-
nates s ∈ N . This ensures that variable importance is derived solely from relevant features, 
preventing spurious contributions from irrelevant covariates.

2.2  Gradient estimation via local linear regression

To estimate the gradient, we employ a local linear regression model. In small regions around 
x0(R) along the coordinate direction s, we approximate ψ using the linear model:

	 ψ
(s)
R (z) = ψ

(s)
R (0) + zg

(s)
R .

Given training data (x1, y1), . . . , (xn, yn), we regress {yi} on the s-coordinate features 
{x

(s)
i } using an intercept-slope model based on data local to R. The gradient g(s)

R  is esti-
mated using the least squares estimate of the slope.

2.3  Removing spurious effects by using machine learning

To improve estimation accuracy, several key modifications are introduced. First, we replace 
{yi} with {ψ̂(xi)}, where ψ̂ represents any machine learning estimator of ψ. While iVarPro 
can operate directly on observed data, this substitution enhances gradient estimation by 
providing a more accurate response target, particularly in challenging settings.

2.4  Expanding the local sample: the release Region

For the local linear model assumption to hold, we must restrict the regression to a neigh-
borhood of x0. Using only observations within R is insufficient, as the sample sizes within 
these small regions are often too limited for stable estimation. To increase the sample size 
for local regression, we leverage the release region defined within the VarPro framework. 
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Releasing R along coordinate s expands the subset of individuals considered by removing 
constraints on x(s) while preserving all other constraints defining R. In this case, since the 
rule is rectangular, releasing on coordinate x(s) corresponds to removing the side of the 
rectangle in the direction of this coordinate (see left panel of Fig. 1). This targeted expansion 
introduces additional variation specifically along x(s), which is precisely what is needed to 
compute the directional derivative. Effectively, the release region, denoted R(s), consists of 
individuals who match those in R along all relevant coordinates s′ ̸= s while expanding the 
available data along x(s), thereby stabilizing gradient estimation while avoiding artificial 
data generation.

2.5  Systematic expansion of the release region

To systematically control the extent of this expansion, we introduce an index 0 ≤ λ ≤ λ0 
that determines the proportion of individuals selected from the release region R(s). Larger 
values of λ correspond to a greater number of included individuals. The expanded region is 
then defined as R(s, λ) = R ∪ R

(s)
λ , where R(s)

λ  is a restricted subset of R(s) determined by 

λ (see right panel of Fig. 1).

2.6  Standardized covariates for dimensionless gradient estimation

To further enhance the procedure, we standardize the variables within the expanded region 
R(s, λ). Specifically, we center x(s)

i  at the centroid value x(s)
0 (R) and then scale it to have 

unit length, denoting the transformed values by z(s)
i :

Fig. 1  Illustration of how iVarPro works. The left panel displays a region R (gray box) corresponding to 
a tree rule, where dark blue points represent observed data within R, and the centroid value is marked by 
a red square. Releasing variable s = 2 expands R to the release region R(s) (yellow area), where light 
blue points denote observed values in this expanded region. The right panel illustrates how the expansion 
region R(s, λ) ⊂ R ∪ R(s), results in different data being incorporated as λ increases (dark blue points 
combining with light blue points), leading to distinct least-squares solutions (represented by lines). Cross-
validation is employed to select the optimal λ
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z
(s)
i =

x
(s)
i − x

(s)
0 (R)√ ∑

xj∈R(s,λ)

(x(s)
j − x

(s)
0 (R))2

.

This transformation serves several purposes: 

1.	 The value z(s)
i = 0 corresponds to the centroid.

2.	 It ensures that the least-squares gradient estimator is standardized.
3.	 It enables a systematic expansion of R(s, λ) from the centroid.

For instance, λ = 1 is calibrated so that it expands R by one standard deviation in x(s) from 
the centroid, which we adopt as the upper bound λ0 in our analysis.

The local gradient is estimated via least squares regression using the data {z
(s)
i , ψ̂(xi)} 

within R(s, λ):

	 ψ̂(xi) = α
(s)
R + z

(s)
i β

(s)
R + εi, xi ∈ R(s, λ).

The least-squares slope is then used as the local gradient estimate: ĝ(s)
R := β̂

(s)
R .

2.7  Cross-validation for optimizing the fit

The expansion parameter λ controls the incorporation of the release region R(s)
λ  into the 

local linear regression model. A smaller λ retains more localized data, preserving strong 
local assumptions, whereas a larger λ increases the sample size at the risk of including 
points that deviate from the local behavior of ψ. To select λ optimally, we use leave-one-out 
cross-validation based on the Predicted Residual Sum of Squares (PRESS) statistic.

For a given λ, the PRESS statistic is computed as follows. The leave-one-out residual 
for observation i is:

	 ei = ψ̂(xi) − f̂ (−i)(z(s)
i ),

where f̂ (−i)(z(s)
i ) is the least squares predicted value at z(s)

i  when the i-th observation is 
excluded from the regression fit. The PRESS statistic is then given by:

	
PRESS(s, λ) = 1

|R(s, λ)|
∑

i∈R(s,λ)

e2
i .

Since local regression follows a linear model, the PRESS statistic simplifies in terms of 
leverage values hi:

	
ei =

ψ̂(xi) − f̂(z(s)
i )

1 − hi
,
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where hi is the leverage for z(s)
i  and f̂  is the least squares predictor. Thus, the PRESS sta-

tistic can be rewritten as:

	
PRESS(s, λ) = 1

|R(s, λ)|
∑

i∈R(s,λ)

(
ψ̂(xi) − f̂(z(s)

i )
1 − hi

)2

.

The optimal λ∗ = argminλPRESS(s, λ) is selected, balancing the bias-variance trade-off 
in the local linear regression fit.

2.8  Averaging the gradient across rules

Recall that all cases within a rule are assigned the gradient for the centroid. To obtain a 
more stable estimate for a case xi, we average its gradient values across all of its tree rules, 
denoted as R(xi), which is the set of all rules that contain xi:

	
ĝ(s)(xi) = 1

|R(xi)|
∑

R∈R(xi)

ĝ
(s)
R .

We call this value the individual importance value for xi with respect to variable s.

2.9  Consistency of the gradient estimator

The iVarPro gradient estimator is based on local linear regression using observed values of 
the fitted prediction function ψ̂(x) over release regions defined by tree-based partitions. The 
consistency of local linear regression for estimating function derivatives is well-established 
under smoothness and design conditions (Fan J, Gijbels 1996; Ruppert and Wand 1994). To 
adapt these results to our setting, we consider the total estimation error of ĝ(s)

R (x) for g(s)
R (x) 

as arising from two sources: approximation error due to replacing the unknown regression 
function ψ(x) with a fitted predictor ψ̂(x), and stochastic error from the local linear regres-
sion carried out within the expansion region R(s, λ).

Suppose that ψ(x) is continuously differentiable in a neighborhood of x, and that the 
predictor ψ̂(x) converges uniformly to ψ(x) at rate supx |ψ̂(x) − ψ(x)| = Op(ηn). Then, 
by classical theory for local linear regression (Fan, Gijbels 1996), we obtain

	

∣∣∣ĝ(s)
R (x) − g

(s)
R (x)

∣∣∣ = Op

(
h2 + 1√

nRh3
+ ηn

)
,

where h denotes the effective bandwidth of R(s, λ) along coordinate s, and nR is the num-
ber of samples in the expansion region. The term h2 reflects the bias from local linear 
approximation, 1/

√
nRh3 represents sampling variability under standard regularity condi-

tions, and ηn quantifies the error from plugging in ψ̂.
These results establish consistency of ĝ

(s)
R (x) for g

(s)
R (x), provided that h2 → 0, 

nRh3 → ∞, and ηn → 0 as n → ∞. In terms of finite sample performance, we point out 
two things. First, that our PRESS-based tuning of the release region width λ is designed to 
balance the effect of the bias and the variance terms related to h, thus stabilizing estimation 
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by adapting to local curvature and noise. Secondly, the additive error term ηn appearing in 
the asymptotic expansion should not be interpreted as indicating that the use of an external 
predictor ψ̂ necessarily worsens performance. In practice, replacing the raw response y with 
the smoothed function ψ̂(x) often reduces noise and yields improved stability and accuracy 
in gradient estimation, particularly in challenging problems. In Sect. 3, we will empirically 
evaluate the sensitivity and robustness of ĝ(s)

R  to the choice of fitted model ψ̂ and constrast 
it to the raw estimator using y.

Algorithm 1  iVarPro: Individual Variable Priority
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3  Synthetic experiments

In this section, we evaluate the empirical performance of iVarPro through a series of experi-
ments designed to assess its effectiveness in different settings. We begin with a regression 
simulation study to examine iVarPro’s ability to estimate local gradients under complex 
gradient structures and correlated feature settings. We then investigate its performance in 
a survival simulation, demonstrating its ability to identify variables with localized effects.

3.1  Benchmark regression study

To quantitatively assess the performance of iVarPro, we first apply a benchmark study 
where the true conditional mean and gradient are known. Two distinct simulation settings 
were used. In the first, all features were independently drawn from a Uniform(0, 1) distri-
bution. In the second, dependence was introduced between features by applying a normal 
copula to impose a common correlation ρ = 0.8 among all predictors. For both settings, the 
response depends only on the first two predictors, while additional covariates act as noise 
variables. The model computed was:

	 y = ψ(x(1), x(2)) + ϵ, ϵ ∼ N(0, 1).

We generated datasets with n = {250, 2000} observations and a feature space of dimen-
sion p = {10, 200}. This experimental setup allows us to assess how well iVarPro recovers 
individual-level importance in both low- and high-dimensional settings, as well as under 
different levels of feature correlation and sample size configurations.

Three different ψ models were considered:

	● Model 1 is generated according to a piecewise function: 

	

ψ(x(1), x(2)) =




1, x(2) ≤ 0.25,
15x(2), x(1) ≤ 0.5 and x(2) > 0.25,
7x(1) + 7x(2), x(1) > 0.5 and x(2) > 0.25.

	● Model 2 is a quadratic function of the predictors, defining the response as a function of 
the squared Euclidean norm: 

	 ψ(x(1), x(2)) = 5r1{r≤0.5}, where r = (x(1))2 + (x(2))2.

	● Model 3 follows a simple multiplicative interaction between the two predictors: 

	 ψ(x(1), x(2)) = 6x(1)x(2).

The top row of Fig. 2a displays the 3 functions. The partial gradient with respect to x(1) and 
x(2) are displayed in rows (b) and (c), respectively. For example, for model 1, displayed on 
the extreme left of (a), there are three distinct regions in the feature space: a constant region 
where x(2) ≤ 0.25, a linear region with respect to x(2) when x(1) ≤ 0.5 and x(2) > 0.25, 
and a bivariate linear region when x(1) > 0.5 and x(2) > 0.25. Correspondingly the gradi-
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ent for x(1), displayed on the left of (b), is nonzero only in the bivariate linear region where 
x(1) > 0.5 and x(2) > 0.25. For x(2) > 0.25, the gradient for x(2) shown on the left of (c) 
takes values of 15 when x(1) ≤ 0.5 and 7 when x(1) > 0.5, reflecting a shift in the rela-
tive importance of x(2) depending on the value of x(1). Outside these regions, the function 
remains constant, resulting in a gradient of zero.

3.1.1  Implementing iVarPro

Algorithm 1 was used to implement iVarPro. For the external estimator ψ̂ required by iVar-
Pro, we used random forests to obtain an out-of-bag prediction for ψ. Rule generation and 
population-level variable selection were performed using the R-package varPro, available 
at https://github.com/kogalur/varPro. Random forests were implemented via the CRAN 
R-package randomForestSRC (Ishwaran and Kogalur 2025).

3.1.2  Comparison procedures

We compare iVarPro to three established methods for individualized feature importance:

	● CSRF importance (Xu et al. 2016), implemented using the ranger R package (Wright 
and Ziegler 2017).

	● SHAP, computed using the treeshap R package (Kozminski et al. 2024).
	● LIME, computed using the lime R package (Pedersen and Benesty 2022).

Both SHAP and LIME were applied to a trained XGBoost model (Chen and Guestrin 2016), 
with hyperparameters selected via cross-validation.

We also evaluate three additional versions of iVarPro based on different choices of the 
external predictor ψ̂, in order to gauge the robustness of the gradient estimator to the choice 
of fitted model:

	● iVarPro-raw: No external model is used; local gradients are estimated directly using the 
raw response values y.

	● iVarPro-gbm: The external predictor ψ̂ is a gradient tree boosted model fit using the gbm 
R package (Greenwell et al. 2020).

	● iVarPro-xgb: The external predictor ψ̂ is an XGBoost model.

3.1.3  Performance evaluation and metrics

To evaluate the performance of the various procedures, we considered how well they recov-
ered the gradient. The gradient of ψ serves as a natural gold standard because it quantifies 
the local rate of change of ψ with respect to each feature. An effective feature importance 
method should capture not only whether a variable is influential, but also the relative 
strength of its effect across instances. Since the gradient encodes this information, it pro-
vides a principled basis for comparison.

We employed ranking-based metrics, recognizing that the methods under study are not 
necessarily designed to estimate the gradient directly. Rather, it is sufficient that they cor-
rectly preserve the relative ordering of feature importance across dimensions. Using absolute 
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values for both the estimated and true gradients, we evaluated agreement using Kendall’s 
τb, which measures the strength of monotonic association between two rank vectors while 
adjusting for ties. The metric was applied at the individual level by comparing each proce-
dure’s p-dimensional vector of predicted values to the true gradient vector for that instance. 
Final results were obtained by averaging the metric across all individuals.

In addition to Kendall’s τb, we report two complementary ranking-based metrics: the 
concordance index (C-index) (Harrell et al. 1982) and the area under the precision-recall 
curve (PR-AUC) (Saito and Rehmsmeier 2015). The C-index generalizes Kendall’s tau and 
measures the probability that, for a randomly selected pair of features, the estimated impor-
tance correctly ranks the true gradient magnitudes. Precision-recall analysis is particularly 
relevant in our setting due to the potential sparsity of gradient vectors. To apply it, we bina-
rized the true gradient vector by labeling features as “positive” if their values exceeded the 
25th percentile and “negative” otherwise.

Fig. 2  Contour plots illustrating the simulation functions and their gradients. Darker regions indicate 
higher values, while white represents the lowest value (zero). a Top row: True function values for the 
three simulation models described in the text. b Middle row: Gradients of the functions with respect to 
x(1). c Bottom row: Gradients with respect to x(2)
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3.1.4  Results

The simulations were repeated independently 100 times for each experimental condition. 
Results are summarized in Figs. 3, 4, and 5, which display performance across the three 
evaluation metrics: Kendall’s τb, concordance index (C-index), and area under the preci-
sion-recall curve (PR-AUC), respectively. Each figure contains two panels: the left panel 
corresponds to the uncorrelated predictor setting, where features were sampled indepen-
dently from a Uniform(0, 1) distribution; the right panel corresponds to the correlated set-
ting, where dependence among features was introduced using a normal copula with pairwise 
correlation ρ = 0.8. Red error bars represent 95% confidence intervals for the mean and are 
slightly offset for clarity.

	● iVarPro demonstrates the strongest overall performance, with its advantage becoming 
more pronounced as the sample size increases. This effect is especially clear for Kend-
all’s τb and the C-index, which directly reflect the ranking of true gradient values. While 
the PR-AUC metric requires binarization and is therefore more sensitive to threshold-
ing, iVarPro still shows a consistent upward trend.

	● iVarPro maintains strong performance in high-dimensional settings, particularly as the 
sample size increases.

	● These performance patterns remain consistent across both uncorrelated and correlated 
experimental conditions.

Because iVarPro explicitly targets the estimation of the gradient vector, we also evaluated its 
accuracy using mean squared error (MSE), which directly compares the estimated gradients 
to the true gradients. This metric is appropriate for iVarPro, as it produces scale-matched 
gradient estimates, unlike comparison methods that output relative importance scores. 
Results are shown in Fig. 6 and summarized below:

	● The three procedures using externally fitted predictors (iVarPro, iVarPro-gbm, and iVar-
Pro-xgb) performed similarly across all experimental settings, indicating that iVarPro is 
robust to the choice of standard machine learning predictor.

	● In contrast, iVarPro-raw, which uses the raw outcome y without any smoothing, exhib-
ited consistently higher MSE for Models 2 and 3 in the correlated settings, indicating a 
lack of robustness to noise and feature dependence. In Model 3, its error was so large 
that it exceeded the range of the plot and does not appear in the displayed results.

3.1.5  Visual comparison

To visually compare how the different procedures performed, we present results from a 
single run of the benchmark study using Model 2 for uncorrelated features with d = 10 
and n = 2000, a setting where the comparison procedures performed reasonably well. Indi-
vidual variable importance values for each procedure are shown in Fig. 7. The vertical and 
horizontal axes correspond to the observed values of (x(1), x(2))T , while point sizes are 
scaled according to each procedure’s importance values. The left and right sides of the plots 
correspond to x(1) and x(2), respectively.
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Comparing these results to the true gradient (middle column of the second and third rows 
(b) and (c) of Fig. 2), we observe that iVarPro more accurately captures the true gradient 
structure, in agreement with our benchmark findings.

To gain further insight into iVarPro, we refer to Fig. 8. The figure displays data points 
from the simulation (black points) with superimposed tree rules R used by iVarPro to con-
struct its estimator. These rules correspond to small rectangular regions, representing the 
terminal nodes of random trees, and are color-coded to indicate the estimated gradient. 
Notice how the rules blanket the feature space, enabling iVarPro to form an accurate esti-
mator. The top panels show the true gradient, while the bottom panels display the gradi-
ent values estimated by iVarPro. A strong agreement between the two highlights iVarPro’s 
effectiveness in capturing the underlying gradient structure.

Fig. 3  Kendall’s τb scores evaluating the performance of iVarPro and comparison procedures in a syn-
thetic setting. Red error bars denote 95% confidence intervals for the mean, slightly offset to the right for 
visual clarity. The left panel corresponds to the uncorrelated setting, where features are independently 
drawn from a Uniform(0, 1) distribution. The right panel shows results for the correlated setting, where 
dependence among predictors is introduced via a normal copula with common correlation ρ = 0.8
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Figure 9 displays the same type of figures for Model 2, but under the correlated setting 
(ρ = 0.8). Despite this challenging scenario, iVarPro effectively captures the underlying 
gradient structure, demonstrating its robustness in the presence of feature dependence.

3.2  Synthetic survival example

In the next example, we simulated a survival setting where the true (potentially unobserved) 
survival time was given by

	
T o = log

[
1 + V + exp

4∑
s=1

βsX(s) + β5X(5)1{X(2)>0.5})

]
.

Fig. 4  C-index scores evaluating the performance of iVarPro and comparison procedures in a synthetic 
setting
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The variable V follows a standard exponential distribution and is sampled independently of 
the features X(s), which are drawn independently from a Uniform(0, 1) distribution.

We take ψ(x) to be the restricted mean survival time (RMST) (Irwin 1949; Andersen 
et al. 2004; Royston and Parmar 2011; Kim et al. 2017). The RMST provides a meaningful 
summary of survival and is defined as the integral of the survival function up to a specified 
time horizon τ > 0:

	
ψ(X) =

ˆ τ

0
S(t|X) dt,

where the survival function is given by

	 S(t|x) = P{T o > t|X = x}.
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Fig. 5  PR-AUC scores evaluating the performance of iVarPro and comparison procedures in a synthetic 
setting
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In this example, we can derive a closed-form expression for the gradient of ψ(x), allowing 
us to exactly assess the performance of iVarPro. We have

	 S(t|x) = P {log[1 + V + A(x)] > t} ,

where

	
A(x) = exp

(
4∑

s=1

βsx(s) + β5x(5)1{x(2)>0.5}

)
.

Since V follows a standard exponential distribution, its survival function is given by
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the correlated setting, the MSE for iVarPro-raw was significantly large, exceeding the plotted range and 
therefore not visible in the displayed results
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Fig. 7  Individual variable impor-
tance values for each procedure 
in Model 2 with uncorrelated 
features (d = 10, n = 2000). 
The vertical and horizontal axes 
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dure’s importance values. The 
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spectively. Compared to the true 
gradient (middle column of (b) 
and (c) of Fig. 2), iVarPro more 
accurately captures the underly-
ing gradient structure
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	 P{V > v} = e−v.

Thus, the survival function simplifies to

	 S(t|x) = P
{

V > et − 1 − A(x)
}

= eA(x)λ(t), where λ(t) = exp(−et + 1)

and the RMST becomes

	
ψ(x) = eA(x)Λ(τ), where Λ(τ) =

ˆ τ

0
λ(t)dt.

Differentiating, we obtain the partial derivatives:

Fig. 8  Tree rules and gradient estimates from iVarPro for Model 2. The figure displays simulation data 
points (black) along with tree rules R (colored rectangles), which represent terminal nodes from random 
trees. Rule colors indicate the estimated gradient. The top panels show the true gradient, while the bot-
tom panels display iVarPro’s gradient estimates. The close agreement between the top and bottom panels 
highlights iVarPro’s ability to accurately capture the gradient structure
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∂ψ(x)
∂x(s) = βsA(x)eA(x)Λ(τ), s = 1, 2, 3, 4
∂ψ(x)
∂x(5) = β5A(x)eA(x)Λ(τ)1{x(2)>0.5}.

Notice that the gradient for variables x(1), . . . , x(4) depends on all signal variables, including 
x(5). These variables serve as population variables, meaning they have a strong population-
level effect that would be immediately identified in a large proportion of the target popula-
tion. On the other hand, x(5) has a smaller effect that is modulated by x(2) and influences 
survival only within a specific subpopulation—namely, individuals for whom x(2) > 0.5. 
In particular, the gradient for x(5) is nonzero only in this subregion, highlighting its local-
ized effect.

Fig. 9  iVarPro gradient estimates under correlated features. The figure displays results for Model 2 with 
features correlated at ρ = 0.8. The top panels show the true gradient, while the bottom panels display 
iVarPro’s estimated gradient. Despite the feature dependence, iVarPro closely matches the true gradient, 
highlighting its robustness in capturing the underlying structure even in correlated settings
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3.2.1  Results

Parameters were βs = 2 for s = 1, . . . , 5, and additionally, 15 noise variables were included, 
resulting in a total of p = 20 features. Random censoring at a 25% rate was applied, and a 
total of n = 2000 data points were sampled.

Since the effect of τ  acts only as a global scaling parameter to the gradient, its value is not 
critical. However, for concreteness, we set τ  to the largest follow-up time for our time evalu-
ation point. The survival function for determining the RMST was estimated using random 
survival forests (RSF) (Ishwaran et al. 2008).

Figure 10 displays the individual importance values for x(s), s = 1, . . . , 4, compared to 
x(5), with point sizes in the figure scaled according to the importance values of x(5). For the 
plot of x(2) versus x(5), we observe that individual importance is only positive in the subre-
gion x(2) > 0.5, agreeing with the true gradient calculations previously derived.

4  Precision survival analysis using ECG and clinical data

As our next illustration, we apply iVarPro to a dataset previously analyzed in Gorodeski 
et al. (2009). This dataset originates from a large cohort of 18,964 patients who underwent 
treadmill exercise testing for the evaluation of suspected coronary artery disease. Notably, 
all patients had a clinically normal resting electrocardiogram (ECG) and no known history 
of cardiovascular disease at the time of testing. The primary outcome of interest was all-
cause mortality. Over a median follow-up of 10.7 years (range for survivors: 5-17 years), 
1,585 patients (8%) died.

A key aspect of this dataset is the diverse nature of its covariates, which include over 150 
features spanning both clinical and electrocardiographic (ECG) measures. Clinical variables 
encompass demographic and medical history factors such as age, gender, diabetes status, 
hypertension, smoking history, and exercise-related parameters including exercise capacity 
and heart rate recovery. These variables are well-established predictors of cardiovascular 
outcomes. In contrast, the ECG-derived features provide finer physiological details, includ-
ing quantitative measures related to heart rate, conduction, repolarization, and left ventricu-
lar mass  (Gorodeski et al. 2009). While ECG variables have been identified as potential 
prognostic markers in various populations, their relative importance compared to clinical 
variables remains uncertain, particularly in patients with clinically normal resting ECGs.

This setting presents an ideal test case for iVarPro, as it reflects a common challenge 
in biomedical research: distinguishing variables with strong population-level effects from 
those with weaker, but potentially meaningful, patient-specific contributions. Clinical vari-
ables are expected to exhibit higher overall importance across the cohort, whereas ECG 
measures may carry individualized relevance that standard population-based methods may 
not fully capture. By applying iVarPro, we can better quantify the extent to which ECG-
derived variables contribute to risk at the individual level.

4.1  Results

For ψ, we used the integrated cumulative hazard function (CHF), with RSF employed to 
estimate ψ. The integrated CHF can be interpreted as a mortality value, representing, for a 
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given patient, the expected number of individuals in the dataset who would be expected to 
die if they shared similar characteristics.

As expected, the top population-level variables identified were clinical variables, includ-
ing Peak METs and the Duke Treadmill Score (DTS). These findings are not unexpected: 
Peak METs (Metabolic Equivalents) quantifies exercise capacity by measuring the maximum 
level of oxygen consumption during exertion. It is a strong prognostic indicator of cardio-
vascular fitness, with higher values generally associated with lower mortality risk (Vive-
kananthan et al. 2003). The Duke Treadmill Score (DTS) (Mark et al. 1991), though often 
classified as a clinical measure, also incorporates ECG-based components. DTS is a well-
established prognostic index derived from exercise stress testing and integrates multiple 
factors, including exercise duration, ST-segment depression, and the presence of angina 
during exertion. Because it combines both clinical and ECG-derived features, DTS serves as 
a comprehensive cardiovascular risk measure. Higher DTS values are generally associated 
with a lower risk of cardiovascular events and mortality.

In addition to these predictors, several ECG-specific variables also emerged as informa-
tive, including the primary lead ST-segment value. To assess the individual importance of 
this variable, we contrast it with Peak METs. Figure 11 displays the observed values of these 
two variables, stratified by patient mortality. In the top panel, point sizes are scaled to reflect 
the magnitude of the estimated gradient for Peak METs, while in the lower panel, point sizes 
correspond to the gradient for the ST-segment value.
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Fig. 10  Individual variable importance values from the synthetic survival example where x(1), . . . , x(4) 
have a strong population-level effect, whereas x(5) has a smaller effect that is modulated by x(2) and 
influences survival only within a specific subpopulation x(2) > 0.5
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In these figures, the gradient becomes more significant with increasing mortality 
(expected number of deaths) from left to right, with Peak METs generally exhibiting the 
largest gradients. For the highest mortality category (rightmost figures), the gradient for 
Peak METs (top right) is particularly large for individuals with low recorded Peak METs 
values, indicating that its effect is especially pronounced for high-risk individuals regardless 
of ST-segment. On the other hand, large gradient values for the ST-segment are observed 
for moderate Peak METs, suggesting that this ECG variable may have a moderating effect 
on Peak METs.

Figure 12 presents a similar set of figures as above, but with the vertical axis representing 
the Duke Treadmill Score (DTS). Recall that DTS incorporates ECG information, therefore 
it is interesting to study whether it also exhibits a localized effect. Circle sizes in the top and 
bottom panels are scaled to the gradients for Peak METs and DTS, respectively. For both 
variables, gradient values increase with cardiovascular risk. Low Peak METs are associated 
with a large gradient, regardless of DTS (top right), whereas the DTS gradient is large for 
moderately low Peak METs. This suggests that patients with very low Peak METs may have 
the potential to reduce their risk by improving their DTS.

Some confirmation of these findings can be discerned from Fig. 13. The figure displays 
Kaplan-Meier survival curves for low ST-segment (black) versus high ST-segment (red) 
across different levels of Peak METs and risk groups, as defined by mortality. Specifically, 
the analysis stratifies patients into moderate- and high-risk groups and further consid-
ers cases where Peak METs is low or moderate. We observe that the ST-segment has a 
pronounced effect in moderate-risk patients, even when Peak METs is low. In high-risk 
patients, the effect of the ST-segment is also pronounced, but only when the individual has a 
moderate Peak METs. This agrees with our finding that in high-risk patients with low Peak 
METs, the ST-segment does not significantly modulate Peak METs’ gradient.

Figure 14 presents the corresponding results for DTS, where low DTS values are shown 
in black and high values in red. Similar to the previous figure for ST-segment, we observe 
a pattern in which DTS influences survival outcomes across different Peak METs levels 
and risk groups. However, the effect of DTS appears less pronounced compared to the ST-
segment, suggesting that while DTS remains an important prognostic factor, its relative 
impact may be weaker in certain subgroups.

5  Discussion

5.1  Challenges with estimating the gradient and contrasting methods

Estimating local gradients in high-dimensional settings poses several challenges. Accurate 
estimation of ψ is needed to ensure reliable importance measures, while defining appropri-
ate neighborhoods is critical to balance bias and variance. Small neighborhoods risk insta-
bility, whereas overly large ones may dilute local structure.

iVarPro addresses these issues by combining local linear regression with rule-based par-
titions derived from VarPro. The release region for each rule identifies a neighborhood of 
cases by relaxing the constraint on a target variable, introducing sufficient local variation for 
estimating coordinate-wise derivatives. These directional gradients are then assembled into 
an interpretable, individualized estimate of feature importance.

1 3

Page 23 of 28    407 



M. Lu, H. Ishwaran

A known limitation of tree-based rules is the presence of sharp boundaries, which can 
introduce discontinuities in estimation. iVarPro mitigates this in two ways: first, by averag-
ing over many randomized tree partitions, which is an approach known to reduce boundary 
artifacts  (Scornet et  al. 2015), and second, by using expansion regions around terminal 
nodes, allowing nearby observations to be included and reducing edge sensitivity.

Several existing model-agnostic methods also aim to assess local feature influence, 
including LIME  (Ribeiro et  al. 2016), SHAP  (Lundberg and Lee 2017), and ICE/ALE 
plots  (Goldstein et al. 2015; Apley and Zhu 2020). These approaches rely on perturbing 
or marginalizing over features to approximate local effects. LIME fits surrogate models on 
perturbed inputs; SHAP computes reweighted model outputs based on conditional expecta-
tions; ICE varies one feature at a time to visualize its effect; and ALE improves upon ICE 
by averaging local differences only within observed regions of the feature space, thereby 
avoiding extrapolation and offering greater robustness to feature correlations. However, 
ALE produces population-level summaries of local effects, rather than individualized 
importance scores. In contrast, iVarPro directly estimates directional gradients at the level 
of the individual using only observed data, offering a stable, localized, and interpretable 
measure of feature sensitivity.

5.2  Empirical results and implications for precision medicine

The empirical results from applying iVarPro demonstrate strong and robust performance 
across a range of conditions. Simulation studies show that iVarPro reliably recovers true 
gradient structures, even in challenging high-dimensional and correlated settings, outper-

Fig. 11  Clinical variable (Peak METs: Metabolic Equivalents at Peak Exercise) versus ECG variable (ST-
segment above the baseline). In the top panel, circle size is scaled to the Peak METs gradient, while in the 
bottom panel, it is scaled to the ECG gradient, with values jittered for clarity. Data is stratified by patient 
mortality, measured as the expected number of deaths

 

1 3

  407   Page 24 of 28



Individual variable priority: a model-independent local gradient method…

0 5 10 15

0
20

40
60

80
10

0

Years

S
ur

vi
va

l

(A) Low Peak METS, Moderate Mortality

0 5 10 15

0
20

40
60

80
10

0

Years

S
ur

vi
va

l

(B) Low Peak METS, High Mortality

0 5 10 15

0
20

40
60

80
10

0

Years

S
ur

vi
va

l

(C) Moderate Peak METS, High Mortality

Fig. 14  Kaplan-Meier survival curves for low DTS (black) versus high DTS (red) under different condi-
tions for Peak METS and mortality
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Fig. 13  Kaplan-Meier survival curves for low ST-segment (black) versus high ST-segment (red) under 
different conditions for Peak METS (low and moderate values) and mortality (moderate risk, high risk)

 

Fig. 12  Same as Fig. 11, but with the vertical axis representing the Duke Treadmill Score (DTS). Circle 
sizes in the top and bottom panels are scaled to the gradients for Peak METs and DTS, respectively
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forming existing model-agnostic methods. Moreover, comparisons among iVarPro variants 
highlight the importance of using a well-calibrated external predictor for ψ: procedures 
based on standard machine learning models (e.g., XGBoost, GBM or random forests) 
yielded similar and stable performance, indicating robustness to the choice of estimator. In 
contrast, iVarPro-raw, which uses unsmoothed outcomes, showed substantially degraded 
accuracy under correlated features. These results emphasize that smoothing the prediction 
surface is critical for reliable gradient estimation. When applied to real-world clinical and 
ECG data, iVarPro was able to distinguish between strong population-level predictors, such 
as Peak METs, and more subtle, patient-specific features like ST-segment deviations and 
DTS–highlighting its utility for individualized interpretation in precision medicine.

The implications for precision medicine are significant. Traditional variable selection 
methods prioritize predictors with high average importance, potentially obscuring individ-
ual heterogeneity in risk factors. iVarPro provides a personalized framework that enhances 
our understanding of how specific variables contribute to risk at the individual level. This 
distinction is especially critical in clinical decision-making, where two patients with similar 
overall risk scores may have different underlying drivers of that risk. By identifying patient-
specific predictors, iVarPro can help tailor interventions to the variables that matter most for 
each individual.

5.3  Computational burden

To make such personalized modeling feasible in real-world clinical settings, computational 
efficiency must scale with both sample size and feature dimension. We assessed iVarPro’s 
computational speed using Experiment Model 2, varying sample sizes (n) and feature dimen-
sions (p) under both uncorrelated and correlated settings. Results are shown in Fig. 15. As 
expected, computation time scaled approximately linearly with n, reflecting the cost of local 
gradient estimation and tree-based partitioning. Notably, CPU times remained within a few 
seconds across increasing p, even up to p = 500. This stability can be attributed to VarPro’s 
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Fig. 15  Computation times (in seconds) for iVarPro across varying sample sizes (n), dimensions (p), and 
correlation settings. Each line reflects the average CPU time over replicated simulations from Experiment 
Model 2
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preliminary feature screening step, which effectively reduces the working dimension before 
local modeling. By focusing estimation only on signal variables, iVarPro maintains compu-
tational feasibility even in high-dimensional settings.

5.4  Future work

Future research could explore extending iVarPro to additional medical domains, incorpo-
rating time-dependent effects in survival analysis, and refining its integration with causal 
inference techniques. Ultimately, this approach offers a promising avenue for enhancing 
patient-centered decision-making and advancing the goals of precision medicine.
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