

Min Lu

Object:

Introduction Effect sizes and standard error Coding reliability Steps in a meta-analysis

R Example

Exercise

Class 11: Meta-Analysis for Binary Outcome R section EPH 705

Min Lu

Division of Biostatistics University of Miami

Spring 2017

Overview

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction Effect sizes and standard error Coding reliability Steps in a meta-analysis

R Example

Exercise

Object:

Introduction Effect sizes and standard error Coding reliability Steps in a meta-analysis Homogeneity test

2 R Example

Introduction

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction

Effect sizes and standard error Coding reliability Steps in a

meta-analysis Homogeneity test

R Example

- The term "meta-analysis" was coined by Gene V. Glass, who was the first modern statistician to formalize the use of the term meta-analysis. He states "my major interest currently is in what we have come to call ...the meta-analysis of research. The term is a bit grand, but it is precise and apt ... Meta-analysis refers to the analysis of analyses"
- Terms viewed as interchangeable include Systematic review, Research synthesis and Quantitative review

Advantages

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction

Effect sizes and standard error Coding reliability

- Steps in a meta-analysis Homogeneity tes
- R Example

- Results can be generalized to a larger population
- The precision and accuracy of estimates can be improved as more data is used. This, in turn, may increase the statistical power to detect an effect.
- Inconsistency of results across studies can be quantified and analyzed. For instance, does inconsistency arise from sampling error, or are study results (partially) influenced by between-study heterogeneity.
- Hypothesis testing can be applied on summary estimates,
- · Moderators can be included to explain variation between studies,
- The presence of publication bias can be investigated

Problem: Publication bias

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction

Effect sizes and standard error Coding reliability Steps in a meta-analysis Homogeneity test R Example

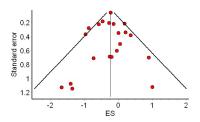
Exercise

Another potential pitfall is the reliance on the available body of published studies, which may create exaggerated outcomes due to publication bias, as studies which show negative results or insignificant results are less likely to be published. For example, pharmaceutical companies have been known to hide negative studies and researchers may have overlooked unpublished studies such as dissertation studies or conference abstracts that did not reach publication. This is not easily solved, as one cannot know how many studies have gone unreported

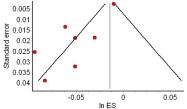
Problem: Publication bias

Class 11: Meta-Analysis for Binary Outcome

Min Lu


Object:

Introduction Effect sizes a standard erro


Steps in a meta-analysis Homogeneity tes

R Example

Exercise

A funnel plot expected without the file drawer problem. The largest studies converge at the tip while smaller studies show more or less symmetrical scatter at the base

A funnel plot expected with the file drawer problem. The largest studies still cluster around the tip, but the bias against publishing negative studies has caused the smaller studies as a whole to have an unjustifiably favorable result to the hypothesis

Min Lu

Object:

Introduction

Effect sizes and standard error

Steps in a meta-analysis Homogeneity tes

R Example

Exercise

In statistics, the Cochran-Mantel-Haenszel test (CMH) is a test used in the analysis of stratified or matched categorical data. We consider a binary outcome variable such as case status (e.g. lung cancer) and a binary predictor such as treatment status (e.g. smoking). The observations are grouped in strata. The stratified data are summarized in a series of 2×2 contingency tables, one for each strata. The *ith* such contingency table is:

	Treatment	No treatment	Row total
Case	Ai	Bi	N 1i
Controls	Ci	Di	N _{2i}
Column total	M _{1i}	M _{2i}	T)

The common odds-ratio of the K contingency tables is defined as:

$$R = \frac{\sum_{i=1}^{K} \frac{A_i D_i}{T_i}}{\sum_{i=1}^{K} \frac{B_i C_i}{T_i}},$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 7/29

Min Lu

Object:

Introduction

Effect sizes and standard error

Steps in a meta-analysis Homogeneity tes

R Example

Exercise

The null hypothesis is that there is no association between the treatment and the outcome. More precisely, the null hypothesis $H_0: R = 1$ and the alternative hypothesis is $H_1: R \neq 1$. The test statistic is:

$$\xi_{CMH} = \frac{\sum_{i=1}^{K} (A_i - \frac{N_{1i}M_{1i}}{T_i})^2}{\sum_{i=1}^{K} \frac{N_{1i}N_{2i}M_{1i}M_{2i}}{T_i^2(T_i - 1)}}.$$

It follows a χ^2 distribution with degree of freedom K-1 asymptotically under the null hypothesis.

	Treatment	No treatment	Row total
Case	Ai	Bi	N _{1i}
Controls	Ci	Di	N _{2i}
Column total	M _{1i}	M _{2i}	T)

Effect size and standard error

Class 11: Meta-Analysis for Binary Outcome

Effect sizes and standard error

• Why Effect size?

	Treatment	No treatment	Row total
Case	Ai	Bi	N _{1i}
Controls	Ci	Di	N _{2i}
Column total	M 1i	M _{2i}	T)

- Odds ratio (OR): $SE_{LogOR_i} = \sqrt{\frac{1}{A_i} + \frac{1}{B_i} + \frac{1}{C_i} + \frac{1}{D_i}}$
- Risk Ratio (RR): $SE_{LogRR_i} = \sqrt{\frac{1}{A_i} + \frac{1}{N_{1i}} + \frac{1}{C_i} + \frac{1}{N_{2i}}}$
- Risk Difference (RD): $SE_{RD} = \sqrt{\frac{A_i * B_i}{N_{1i}} + \frac{C_i * D_i}{N_{2i}}}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

Effect size and standard error

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction Effect sizes and

standard error

Steps in a meta-analysis Homogeneity to

R Example

Exercise

Hedges' g for Physcial Outcome [95% CI]

INC WOOD	-2.00 -1.00 0.00 1.00 2.00 3.00	0.22 [0.00 , 0.38]
RE Model	^	0.22 [0.06 , 0.38]
Wu et al., 2008	H	0.96 [0.44 , 1.48]
Wu et al, 2007	H	0.45 [-0.10 , 0.99]
Skrinar et al., 2005	H	0.00 [-0.88 , 0.88]
Porsdal et al, 2010	H B H	0.10 [-0.18 , 0.37]
Mota-Pereira et al. 2011	⊢	1.43 [0.58 , 2.28]
Menza et al., 2004	H	0.39 [-0.17 , 0.96]
Melamed et al., 2008	H	0.21 [-0.44 , 0.86]
McKibbin et al., 2006	⊢	0.15 [-0.37 , 0.67]
Marzolini et al., 2008	·	-0.08 [-1.34 , 1.19]
Littrell et al., 2003	—	0.45 [-0.04 , 0.94]
Kwon et al., 2006		0.53 [-0.12 , 1.18]
Gilhoff et al, 2010	H	0.21 [-0.35 , 0.76]
Forsberg et al. 2008	H	-0.54 [-1.24 , 0.17]
Evans et al., 2005	⊢ − −−−	-0.04 [-0.95 , 0.87]
Daumit et al., 2013	H ≣ H	0.28 [0.04 , 0.51]
Brown et al., 2011	⊢− −1	0.40 [-0.02 , 0.82]
Brown et al., 2006	⊢ − −	-0.23 [-0.90 , 0.43]
Brar et al., 2005	⊢ -	-0.06 [-0.53 , 0.40]
Ball et al., 2001		-0.74 [-1.60 , 0.13]

Coding reliability: Agreement rate

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction Effect sizes and standard error

Coding reliability

Steps in a meta-analysis Homogeneity test

R Example

- Require double-code study information.
- Agreement rate = $\frac{\text{Num of studies with same codings}}{\text{Total Num of studies}}$

Coding reliability: Cohen's Kappa Statistic

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction Effect sizes and standard error

Coding reliability

Steps in a meta-analysis Homogeneity tes

R Example

Exercise

Cohen's kappa coefficient, κ , is a statistic which measures inter-rater agreement for qualitative (categorical) items. It is generally thought to be a more robust measure than simple percent agreement calculation, since κ takes into account the possibility of the agreement occurring by chance. Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories. The definition of κ is:

$$\kappa \equiv \frac{p_o - p_e}{1 - p_e} = 1 - \frac{1 - p_o}{1 - p_e},$$

where p_o is the relative observed agreement among raters (identical to accuracy), and p_e is the hypothetical probability of chance agreement, using the observed data to calculate the probabilities of each observer randomly saying each category. If the raters are in complete agreement then $\kappa = 1$. If there is no agreement among the raters other than what would be expected by chance (as given by p_e), $\kappa \leq 0$. For categories k, number of items N and n_{ki} the number of times rater i predicted category k:

$$p_e = \frac{1}{N^2} \sum_k n_{k1} n_{k2}$$

Coding reliability: Cohen's Kappa Statistic

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction Effect sizes an standard error

Coding reliability

Steps in a meta-analysis Homogeneity tes

R Example

Exercise

Suppose that you were analyzing data related to a group of 94 people applying for a grant. Each grant proposal was read by two readers and each reader either said "Yes" or "No" to the proposal. Suppose the disagreement count data were as follows, where A and B are readers, data on the main diagonal of the matrix (top left-bottom right) the count of agreements and the data off the main diagonal, disagreements:

		B	;	e.g.			B	1
		Yes	No				Yes	No
A	Yes	а	b			Yes	20	5
A	No	с	d		Α	No	10	15

Coding reliability: Cohen's Kappa Statistic

The observed proportionate agreement is:

$$p_o = \frac{a+d}{a+b+c+d} = \frac{20+15}{50} \approx 0.70$$

To calculate p_e (the probability of random agreement), the expected probability that both would say yes at random is:

$$p_{\text{Yes}} = \frac{a+b}{a+b+c+d} \cdot \frac{a+c}{a+b+c+d} = 0.5 * 0.6 = 0.3$$

Similarly:

$$p_{\rm No} = \frac{c+d}{a+b+c+d} \cdot \frac{b+d}{a+b+c+d} = 0.5 * 0.4 = 0.2$$

Overall random agreement probability is the probability that they agreed on either Yes or No, i.e.:

$$p_e = p_{\rm Yes} + p_{\rm No} = 0.3 + 0.2 = 0.5$$

So now applying our formula for Cohen's Kappa we get:

$$\kappa = \frac{p_o - p_e}{1 - p_e} = \frac{0.70 - 0.50}{1 - 0.50} = 0.40$$

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction Effect sizes and standard error

Coding reliability

Steps in a meta-analysis Homogeneity test

R Example

Steps in a meta-analysis

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction Effect sizes and standard error

Steps in a meta-analysis

R Example

Exercise

- Formulation of the problem
- Search of literature
- Selection of studies ('incorporation criteria')
 - 1. Based on quality criteria, e.g. the requirement of randomization and blinding in a clinical trial

2. Selection of specific studies on a well-specified subject, e.g. the treatment of breast cancer.

3. Decide whether unpublished studies are included to avoid publication bias (file drawer problem)

- Decide which dependent variables or summary measures are allowed. For instance:
- Homogeneity test: selection of a meta-regression statistical model: e.g. simple regression, fixed-effect meta-regression or random-effect meta-regression.

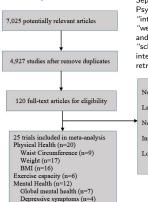
Search of literature

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object

Introduction Effect sizes and standard error


Steps in a meta-analysis

fromogeneity te

R Example

Exercise

Figure 1. Flow of study selection

Schizophrenia symptoms (n=5) Quality of life (n=7) Physical health OOL(n=4) Psychosocial/Behavioral Interventions for People with Mental Illness: An electronic database search was conducted from earliest record to September 2016 using MEDLINE, EMBASE, CLINAHL, BNI and PsycINFO databases. Key terms used in electronic searches included "integrated health", "chronic conditions", "lifestyle intervention", "wellness solution", "mental illness", "psychiatric conditions", "physical and mental integration", "systematic health intervention", "schizophrenia", "combined antipsychotic treatment", "interactive intervention efficacy", "multidimensional clinic study". Reference lists of retrieved articles and relevant meta-analysis studies were also searched.

Not desired intervention $(n^{=42})$ Lack of control condition $(n^{=3})$ Not reporting the desired outcome $(n^{=16})$ Insufficient statistical information $(n^{=3})$ Long-term follow-up previous study $(n^{=2})$

Selection of studies

Class 11: Meta-Analysis for Binary Outcome

Figure 1. Inclusion criteria

Min Lu

Object:

Introduction Effect sizes and standard error

Steps in a meta-analysis

R Example

Exercise

Design

 Experimental study or quasi experimental study

Participants

- Adults, aged 18 years or greater
- DSM, EPDS or other diagnosis of a mental illness

Interventions

- Psychosocial/Behavioral Intervention Outcome measures
 - Physical Health, e.s., WC, BMI, WT, physical health QOL

Breslow-Day statistic in homogeneity test of odds ratio

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction Effect sizes and standard error Coding reliability Steps in a meta-analysis Homogeneity test

R Example

Exercise

In Statistical Methods of Cancer Research; Volume 1 (https://www. iarc.fr/en/publications/pdfs-online/stat/sp32/SP32.pdf) The analysis of case-control studies the authors Breslow and Day derive a statistic to test for the homogeneity of combining strata into an odds ratio (equation 4.30). Given the value of the statistic, the test determines if it is appropriate to combine strata together and compute a single odds ratio.

	Disease present	Disease absent	Totals
Risk factor present (success)	А	В	R1
Risk factor absent (failure)	С	D	R2
Totals	C1	C2	N

the odds ratio for getting a disease with a risk factor compared to not having the risk factor is:

$$\psi = (A * D) / (B * C)$$

Breslow-Day statistic in homogeneity test of odds ratio

Class 11: Meta-Analysis for Binary Outcome

Object:

Introduction Effect sizes and standard error Coding reliability Steps in a meta-analysis Homogeneity test

R Example

Exercise

if we have multiple contingency tables (for example, we stratify by age group), we can use the Mantel-Haenzel estimate to compute the odds ratio across all I strata:

$$\psi_{mh} = \frac{\sum_{i=1}^{I} A_i D_i / N_i}{\sum_{i=1}^{I} B_i C_i / N_i}.$$

For each contingency table we have R1 = A + B, R2 = C + D and C1 = A + C, so we can express the expected odds ratio for that table in terms of the totals:

$$\psi_{mh} = \frac{AD}{BC} = \frac{\tilde{A}(R2 - C1 + \tilde{A})}{(R1 - \tilde{A})(C1 - \tilde{A})}$$

	Disease present	Disease absent	Totals
Risk factor present (success)	A	В	R1
Risk factor absent (failure)	С	D	R2
Totals	C1	C2	Ν

which gives a quadratic equation for \tilde{A} . Let a be the solution to this quadratic equation (only one root gives a reasonable answer).

イロト 不得 トイヨト イヨト

Breslow-Day statistic in homogeneity test of odds ratio

Class 11: Meta-Analysis for Binary Outcome

Homogeneity test

Thus a reasonable test for the adequacy of the assumption of a common odds ratio is to sum up the squared deviation; of observed and fitted values, each standardized by its variance:

$$\chi^{2} = \sum_{i=1}^{I} \frac{(a_{i} - A_{i})^{2}}{V_{i}}$$

where the variance is:

Risk fa prese

(succe Risk fa

$$V_{i} = \left(\frac{1}{A_{i}} + \frac{1}{B_{i}} + \frac{1}{C_{i}} + \frac{1}{D_{i}}\right)^{-1}$$

	Disease present	Disease absent	Totals	If the hor
lisk factor present	А	В	R1	the size o
(success)				number o
lisk factor absent (failure)	с	D	R2	approxim
Totals	C1	C2	Ν	degrees o
				be detern

mogeneity assumption is valid, and of the sample is large relative to the of strata, this statistic follows an ate chi-square distribution on I-1of freedom and thus a p-value can mined

> イロト 不得 トイヨト イヨト 20 / 29

Breslow-Day statistic in homogeneity test of odds ratio

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object

Introduction Effect sizes and standard error Coding reliability

Steps in a meta-analysi

Homogeneity test

R Example

Exercise

If instead we divide the I strata into H groups and we suspect the odds ratios are homogeneous within groups but not between them, Breslow and Day give an alternative statistic (equation 4.32):

$$\chi^{2} = \sum_{h=1}^{H} \frac{\left(\sum_{i \in h} a_{i} - A_{i}\right)^{2}}{\sum_{i \in h} V_{i}}$$

	Disease present	Disease absent	Totals
Risk factor present (success)	A	В	R1
Risk factor absent (failure)	С	D	R2
Totals	C1	C2	Ν

where the *i* summations are over strata in the *hth* group with the statistic being chi-square with only H - 1 degrees of freedom (I assume a different Mantel-Haenzel estimate is computed within each group).

Studies on the Effectiveness of the BCG Vaccine Against Tuberculosis

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction Effect sizes and standard error Coding reliability Steps in a meta-analysis Homogeneity test

R Example

Exercise

Results from 13 studies examining the effectiveness of the Bacillus Calmette-Guerin (BCG) vaccine against tuberculosis.

variable	discreption
trial	trial number
author	author(s)
year	publication year
tpos	# of TB positive cases in the treated (vaccinated) group
tneg	# of TB negative cases in the treated (vaccinated) group
cpos	# of TB positive cases in the control (non-vaccinated) group
cneg	# of TB negative cases in the control (non-vaccinated) group
ablat	absolute latitude of the study location (in degrees)
alloc	method of treatment allocation (random, alternate, or
	systematic assignment)

Min Lu

Object:

Introduction Effect sizes and standard error

Coding reliability

Steps in a meta-analysis

R Example

Exercise

Calculating Effect size

llbrary(metafor)
load BCG vaccine data
dat <- get(data(dat.bcg))
calculate log relative risks and corresponding sampling variances
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
head(dat)</pre>

##		trial	author		tpos	tneg	cpos		ablat	alloc
##	1	1	Aronson	1948	14	119	11	128	44	random
	2	2	Ferguson & Simes		6	300	29	274	55	random
##		3	Rosenthal et al		3	228	11	209	42	random
##	4	4	Hart & Sutherland	1977	62	13536	248	12619	52	random
##		5 F1	rimodt-Moller et al		33	5036	47	5761	13	alternate
##	6	6	Stein & Aronson	1953	180	1361	372	1079	44	alternate
##		yi	vi							
	1		0.3256							
##	2	-1.5854	0.1946							
		-1.3481								
		-1.4416								
##	5	-0.2175	0.0512							
##	6	-0.7861	0.0069							

Min Lu

```
Object
```

Introduction Effect sizes and standard error Coding reliabilit Steps in a

meta-analysis Homogeneity tes

```
R Example
```

Exercise

display the random-effects meta-analysis result

random-effects model
library(metafor)

Loading required package: Matrix

```
## Loading 'metafor' package (version 1.9-9). For an overview
## and introduction to the package please type: help(metafor).
```

res <- rma(yi, vi, data=dat)
res</pre>

```
##
```

```
## Random-Effects Model (k = 13: tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.3132 (SE = 0.1664)
## tau (square root of estimated tau^2 value):
                                                    0.5597
## I^2 (total heterogeneity / total variability);
                                                    92.22%
## H^2 (total variability / sampling variability):
                                                    12.86
##
## Test for Heterogeneity:
## Q(df = 12) = 152,2330, p-val < .0001
##
## Model Results:
##
## estimate
                         zval
                                  pval
                                          ci.lb
                                                   ci.ub
                  se
##
   -0.7145
             0.1798 -3.9744
                                <.0001 -1.0669 -0.3622
                                                              ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
### average relative risk with 95% CI
predict(res. transf=exp)
```


Min Lu

Object:

Introduction Effect sizes and standard error Coding reliability Steps in a meta-analysis

R Example

Exercise

display the meta-regression result

res <- rma(yi, vi, mods = ~ ablat + year, data=dat)

library(metafor)

res

Mixed-Effects Model (k = 13; tau^2 estimator; REML) ## ## tau^2 (estimated amount of residual heterogeneity); 0.1108 (SE = 0.0845) ## tau (square root of estimated tau^2 value); 0.3328 ## I^2 (residual heterogeneity / unaccounted variability): 71.98% ## H^2 (unaccounted variability / sampling variability): 3.57 ## R^2 (amount of heterogeneity accounted for); 64.63% ## ## Test for Residual Heterogeneity: ## QE(df = 10) = 28,3251, p-val = 0,0016 ## ## Test of Moderators (coefficient(s) 2,3):
QM(df = 2) = 12.2043, p-val = 0.0022 ## ## Model Results:

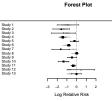
estimate 29.0959 ci.ub ## intrcpt 9030 -60.5724 53.4814 .5455 -0 ## ablat -0.0280 0.0102 0.0062 -0.0481-0.0080 ** 0.1299 ## vear 0.0019 0.0147 0.8966 -0.02690.0307 ## ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

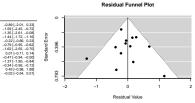
R Example

Forest and Funnel Plot

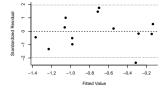
library(metafor) plot(res)

Study 1 Study 2

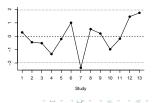

Study 3


Study 4 Study 5

Study 6


Study 7

Shudy 8 Study 9



Fitted vs. Standardized Residuals

In class exercise

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object

Introduction Effect sizes and standard error Coding reliability Steps in a meta-analysis

Homogeneity test

R Example

Exercise

Using the same data but conduct meta-analysis using Odds Ratio

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の < C 27 / 29

Take home exercise

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object:

Introduction Effect sizes and standard error Coding reliability Steps in a meta-analysis

Homogeneity test

R Example

Exercise

Using the same data but conduct meta-analysis using Risk Difference

4 ロ ト 4 団 ト 4 三 ト 4 三 ト 三 9 9 9 9
28 / 29

Class over

Class 11: Meta-Analysis for Binary Outcome

Min Lu

Object

Introduction Effect sizes and standard error Coding reliabilit

Steps in a meta-analysis Homogeneity tes

R Example

