

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Response Cohen's Kappa Statistic

In class exercise

Take home exercise

Class 9: Chapter 6 EPH 705

Min Lu

Division of Biostatistics University of Miami

Spring 2017

Overview

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Response Cohen's Kappa Statistic

In class exercise

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification Cohen's Kappa Statistic

2 R Exercise

Logit Model for Ordinal Responses Cohen's Kappa Statistic In class exercise Take home exercise

Logit Models for Ordinal Responses

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses

Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Respons Cohen's Kappa Statistic

In class exercise Take home exercise Proportional-odds cumulative logit model is possibly the most popular model for ordinal data. This model uses cumulative probabilities upto a threshold, thereby making the whole range of ordinal categories binary at that threshold. Let the response be Y = 1, 2, ..., r where the ordering is natural. The associated probabilities are $\pi_1, \pi_2, ..., \pi_r$, and a cumulative probability of a response less than equal to j is:

$$P(Y \le j) = \pi_1 + \ldots + \pi_j$$

Then a cumulative logit is defined as

$$\operatorname{og}\left(\frac{P(Y \le j)}{P(Y > j)}\right) = \operatorname{log}\left(\frac{P(Y \le j)}{1 - P(Y \le j)}\right) = \operatorname{log}\left(\frac{\pi_1 + \ldots + \pi_j}{\pi_{j+1} + \ldots + \pi_J}\right)$$

This describes the log-odds of two cumulative probabilities, one less-than and the other greater-than type. This measures how likely the response is to be in category j or below versus in a category higher than j.

Logit Models for Ordinal Responses

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses

Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Response Cohen's Kappa Statistic

Take home exercise

The sequence of cumulative logits may be defined as:

Cumulative logits

$$L_1 = \log\left(\frac{\pi_1}{\pi_2 + \pi_3 + \dots + \pi_r}\right)$$
$$L_2 = \log\left(\frac{\pi_1 + \pi_2}{\pi_3 + \pi_4 + \dots + \pi_r}\right)$$
$$\vdots$$
$$L_{r-1} = \log\left(\frac{\pi_1 + \pi_2 + \dots + \pi_{r+1}}{\pi_r}\right)$$

In this notation, L_{j} is the log-odds of falling into or below category j versus falling above it.

Class 9: Chapter 6

Logit Models for Ordinal Responses

Proportional-odds Cumulative Logit Model

Incorporate covariates into the model:

$$L_{1} = \beta_{10} + \beta_{11}X_{1} + \dots + \beta_{1p}X_{p}$$

$$L_{2} = \beta_{20} + \beta_{21}X_{1} + \dots + \beta_{2p}X_{p}$$

$$\vdots$$

$$L_{r-1} = \beta_{r-1,0} + \beta_{r-1,1}X_{1} + \dots + \beta_{r-1,p}X_{p}$$

Now suppose that we simplify the model by requiring the coefficient of each X-variable to be identical across the r-1 logit equations:

Proportional-odds cumulative logit model

In class exercise

R Exercise

 $L_1 = \alpha_1 + \beta_1 X_1 + \dots + \beta_p X_p$ $L_2 = \alpha_2 + \beta_1 X_1 + \dots + \beta_p X_p$ \vdots $L_{r-1} = \alpha_{r-1} + \beta_1 X_1 + \dots + \beta_n X_n$

This model has (r-1) intercepts plus p slopes, for a total of r+p-1 parameters to be estimated.

Interpretation

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses

Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Responses Cohen's Kappa Statistic

Taka hama avarcica

- In the above model, intercept α_j is the log-odds of falling into or below category j when $X_1 = X_2 = ... = 0$.
- A single parameter βk describes the effect of xk on Y such that βk is the increase in log-odds of falling into or below any category associated with a one-unit increase in Xk, holding all the other X-variables constant.
- Constant sloped β_k : The effect of X_k , is the same for all r-1 ways to collapse Y into dichotomous outcomes. For simplicity, let's consider only one predictor: logit $[P(Y \le j)] = \alpha_j + \beta x$. Then the cumulative probabilities are given by: $P(Y \le i) = \exp(\alpha_j + \beta x)/(1 + \exp(\alpha_j + \beta x))$ and since β is

 $P(Y \leq j) = \exp(\alpha_j + \beta x)/(1 + \exp(\alpha_j + \beta x))$ and since β is constant, the curves of cumulative probabilities plotted against x are parallel.

• The odds-ratio is proportional to the difference between x_1 and x_2 where β is the constant of proportionality: $\exp[\beta(x_1-x_2)]$, and thus the name "proportional odds model".

UNIVERSITY OF MIAMI

Proportional-Odds Cumulative Logit Model

Min Lu

Object:

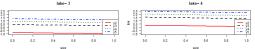
Logit Models for Ordinal Responses

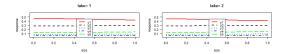
Plot and Understand Model Specification

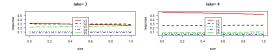
đ

Cohen's Kappa Statistic

R Exercise


Logit Model for Ordinal Response Cohen's Kappa Statistic


In class exercise


Take home exercise

Model Specification Example: alligators SAS example

Proportional-Odds Cumulative Logit Model with Interaction

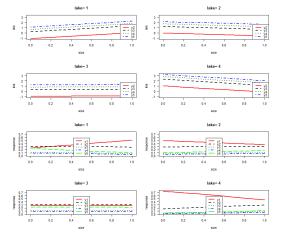
Min Lu

Object:

Logit Models for Ordinal Responses

Plot and Understand Model Specification

Cohen's Kappa Statistic


R Exercise

Logit Model for Ordinal Response Cohen's Kappa Statistic

in class exercise

Take home exercise

Model Specification Example: alligators SAS example

Cumulative Logit Model without Proportional-Odds Assumption

Class 9: Chapter 6

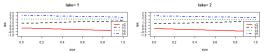
Min Lu

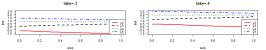
Object:

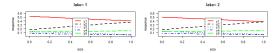
Logit Models for Ordinal Responses

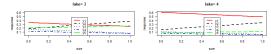
Plot and Understand Model Specification

Cohen's Kappa Statistic


R Exercise


Logit Model for Ordinal Responses Cohen's Kappa Statistic


In class exercise


Take home exercise

Model Specification Example: alligators SAS example

Cohen's Kappa Statistic

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Responses Cohen's Kappa Statistic In class exercise Take home exercise Cohen's kappa coefficient, κ , is a statistic which measures inter-rater agreement for qualitative (categorical) items. It is generally thought to be a more robust measure than simple percent agreement calculation, since κ takes into account the possibility of the agreement occurring by chance. Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories. The definition of κ is:

$$\kappa \equiv \frac{p_o - p_e}{1 - p_e} = 1 - \frac{1 - p_o}{1 - p_e},$$

where p_o is the relative observed agreement among raters (identical to accuracy), and p_e is the hypothetical probability of chance agreement, using the observed data to calculate the probabilities of each observer randomly saying each category. If the raters are in complete agreement then $\kappa = 1$. If there is no agreement among the raters other than what would be expected by chance (as given by p_e), $\kappa \leq 0$. For categories k, number of items N and n_{ki} the number of times rater i predicted category k:

$$p_e = \frac{1}{N^2} \sum_k n_{k1} n_{k2}$$

10/24

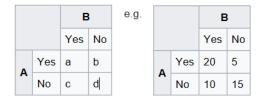
Cohen's Kappa Statistic

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification


Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Response Cohen's Kappa Statistic

In class exercise

Suppose that you were analyzing data related to a group of 94 people applying for a grant. Each grant proposal was read by two readers and each reader either said "Yes" or "No" to the proposal. Suppose the disagreement count data were as follows, where A and B are readers, data on the main diagonal of the matrix (top left-bottom right) the count of agreements and the data off the main diagonal, disagreements:

Class 9: Chapter 6

Cohen's Kappa Statistic

The observed proportionate agreement is:

$$p_o = \frac{a+d}{a+b+c+d} = \frac{20+15}{50} \approx 0.70$$

To calculate p_e (the probability of random agreement), the expected probability that both would say yes at random is:

$$p_{\text{Yes}} = \frac{a+b}{a+b+c+d} \cdot \frac{a+c}{a+b+c+d} = 0.5 * 0.6 = 0.3$$

Similarly:

$$p_{\rm No} = \frac{c+d}{a+b+c+d} \cdot \frac{b+d}{a+b+c+d} = 0.5 * 0.4 = 0.2$$

Overall random agreement probability is the probability that they agreed on either Yes or No, i.e.:

$$p_e = p_{\text{Yes}} + p_{\text{No}} = 0.3 + 0.2 = 0.5$$

So now applying our formula for Cohen's Kappa we get:

$$\kappa = \frac{p_o - p_e}{1 - p_e} = \frac{0.70 - 0.50}{1 - 0.50} = 0.40$$

Logit Models

Ordinal Responses Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Response Cohen's Kappa Statistic

Take home exercise

R Exercise

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Responses

Cohen's Kappa Statistic

In class exercise

Take home exercise

Proportional-odds Cumulative Logit Model

	##		<pre>logitlink(P[Y<=1])</pre>	logitlink(P[Y<=2])	logitlink(P[Y<=3])
	##	(Intercept)	-0.10	Ű 1.12	1.60
	##	size	-0.21	-0.21	-0.21
	##	factor(lake)2	-0.06	-0.06	-0.06
	##	factor(lake)3	-0.71	-0.71	-0.71
	##	factor(lake)4	0.41	0.41	0.41
	##		<pre>logitlink(P[Y<=4])</pre>		
	##	(Intercept)	2.02		
	##	size	-0.21		
	##	factor(lake)2	-0.06		
	##	factor(lake)3	-0.71		
	##	factor(lake)4	0.41		

round(depvar(fit), 3)## predicted proportion

 ##
 y1
 y2
 y3
 y4
 y5

 ##1
 0.500
 0.103
 0.61
 0.61
 0.65

 ##2
 0.428
 0.000
 0.622
 0.183
 0.61
 0.55

 ##3
 0.250
 0.550
 0.650
 0.000
 0.150

 ##4
 0.446
 0.286
 0.214
 0.036
 0.000
 1.50

 ##4
 0.4464
 0.286
 0.214
 0.036
 0.000
 1.50

 ##5
 0.276
 0.286
 0.214
 0.037
 0.042
 0.208

 ##6
 0.276
 0.241
 0.207
 0.103
 0.172

 ##7
 0.390
 0.463
 0.024
 0.494
 0.208

 ##6
 0.276
 0.241
 0.207
 0.103
 0.172

 ##8
 0.773
 0.445
 0.045
 0.465
 0.045
 0.045

Plot and Understand Model Specification

Plot function

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification

```
Cohen's Kappa
Statistic
```

R Exercise

Logit Model for Ordinal Responses

Cohen's Kappa Statistic

In class exercise

Take home exercise

plot.alligators <- function(type = "link", model) { xx <- data.frame(lake = rep(as.factor(la4), each = 11), size = rep(c(0:10)/10, 4)) pp.xx <- cbind(predict(model, type = type, newdata = xx)) for (1 in unique (alligatorslike)) if (rpm:x) nark(park), pp.xx(part,], type = "1", las = 1, lud = 2, ylin = c(an(pp.xx)) nark(pp.xx)), ylab = type, xlab = "mize", nam = pante("lake", if (rpm:an("not"), col = mycol, lty = 1:4, legend = colnames(fit8y)[-1], lud = 2) legend("bottom", col = mycol, lty = 1:4, legend = colnames(fit8y), lud = 2) } } }</pre>

UNIVERSITY OF MIAMI

Plot and Understand Model Specification

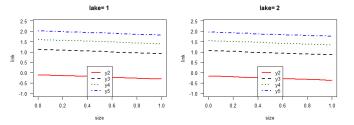
Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification

Cohen's Kappa Statistic


R Exercise

Logit Model for Ordinal Responses

Cohen's Kappa Statistic

In class exercise

Take home exercise

lake= 3

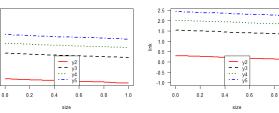
2.5

2.0

1.5

1.0

0.5


0.0

-0.5

-1.0

Ě

< ロ ト < 団 ト < 臣 ト < 臣 ト 三 の Q C</p>

1.0

15/24

Western Collaborative Group Study data

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Responses

Cohen's Kappa Statistic

In class exercise

Take home exercise

Data:The Western Collaborative Group Study (WCGS), a prospective cohort studye, recruited middle-aged men (ages 39 to 59) who were employees of 10 California companies and collected data on 3154 individuals during the years 1960-1961. These subjects were primarily selected to study the relationship between behavior pattern and the risk of coronary hearth disease (CHD). A number of other risk factors were also measured.

variable name	discreption
id	Subject ID:
age0	Age: age in years
height0	Height: height in inches
weight0	Weight: weight in pounds
sbp0	Systolic blood pressure: mm Hg
dbp0	Diastolic blood pressure: mm Hg
chol0	Cholesterol: mg/100 ml
behpat0	Behavior pattern:
ncigs0	Smoking: Cigarettes/day
dibpat0	Dichotomous behavior pattern: $0 = Type B$; $1 = Type A$
chd69	Coronary heart disease event: $0 = \text{none}$; $1 = \text{yes}$
typechd	to be done
time169 Observation (follow up) time: Days	
arcus0	Corneal arcus: $0 = $ none; $1 = $ yes

Logit Model for Ordinal Responses

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Responses

Cohen's Kappa Statistic

In class exercise

Take home exercise

Logistic regression for Ordinal outcome

wcgs <- read.csv("wcgs.csv")[, -1]
head(wcgs)
library("VGAM")</pre>

Loading required package: stats4

Loading required package: splines

```
wcgs%bebpat1 <- factor(wcgs%bebpat0, order = T)
wcgs%bebp</pre> /wcgs%bebp /wcgs%bebp
```

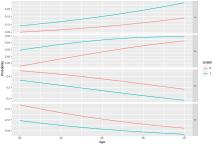
##		Estimate	Std.	Error	z value	Pr(z)
##	(Intercept):1	-3.80		0.29	-13.04	0.00
##	(Intercept):2	-1.36		0.28	-4.81	0.00
##	(Intercept):3	0.73		0.28	2.58	0.01
##	age0	0.03		0.01	4.70	0.00
##	chd691	0.65		0.12	5.20	0.00

Logit Model for Nominal Responses

Class 9: Chapter 6

Logit Model for **Ordinal Responses**

GGplot Logistic regression for Ordinal outcome


xx <- data.frame(chd69 = rep(as.factor(c(0, 1)), each = 41), age0 = rep(c(30:70),2))</pre> prixt <- cbin(xx, predict(model, type = "response", needata =xx)) # liberar("stachards") lpp <- melt(pp.xx, id.vars = c("are0","chd69"), value.name = "probability")</pre>

library("ggplot2"

ggplot(1pp, ass(x = age0, y = value, colour = chd69)) + geon_line() + facet_grid(variable -., scales = "free")+ labs(lines= "Nitrogen", x = "Age", y = "Probability",

title = "Behavior Pattern vs. Age and Coronary Heart Disease (chd69)")

Behavior Pattern vs. Age and Coronary Heart Disease (chd69)

イロト 不得 トイヨト イヨト 18/24

Plot and Understand Model Specification

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification

Cohen's Kappa Statistic

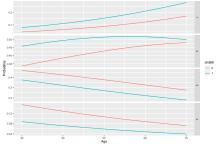
R Exercise

Logit Model for Ordinal Responses

Cohen's Kappa Statistic

In class exercise

Take home exercise


Relaxing Proportional-odds Assumption

model <- vgla(buhpati - age0 + che50; fmily = cumulative(parallel = F - age0; deta = vcgs)
xx < data fmsc(idd0 = sprain(s.factor(c(0:1)) = act = 4), age0 = rp((50:70), 2))
pp.xx <- chin4(xx predict(model, type = "response, needeta = xx)) = f((50:70), 2))
in c(70:100, xz, id.vzz = c("ase0", "che50"), vglas ames = "arcbablily")</pre>

library("ggplot2")

ggplot(by_seck / ggplot(by_seck / seck = age0, y = value, colour = chd69)) + geom line() + facet_grid(variable -., scales = "free") + labs(lines = "Hitrogen", x = "Age", y = "Probability", title = "Behavior Pattern vs. Age and Coronary Heart Disease (chd69)")

Behavior Pattern vs. Age and Coronary Heart Disease (chd69)

<ロト < 回 ト < 巨 ト < 巨 ト 三 の < C 19/24

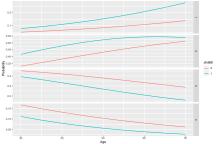
Plot and Understand Model Specification

Class 9: Chapter 6

Logit Model for **Ordinal Responses**

Proportional-odds Assumption with interaction

model <- vglm(behpati - age0 + chd69 + age0 + chd69, family = cumulative(parallel = 7).</pre> data = wcgs)


stat = vcgs)
xx <- data_frame(chd69 = rep(as.factor(c(0, 1)), each = 41), are0 = rep(c(30:70), 2))</pre> pp.xx <- cbind(xx, predict(model, type = "response", newdata = xx)) #

lpp <- melt(pp.xx, id.vars = c("age0", "chd69"), value.name = "probability")</pre>

library("geplot2")

gplot(lpp, as(x = age0, y = value, colour = chd69)) + geom_line() + facet_grid(variable -., scales = "free") + labs(lines = "Nitrogen", x = "Age", y = "Probability", title = "Behavior Pattern vs. Age and Coronary Heart Disease (chd69)")

Behavior Pattern vs. Age and Coronary Heart Disease (chd69)

イロト 不得 トイヨト イヨト 20 / 24

Cohen's Kappa Statistic

cohen.kappa(x = cbind(rater1, rater2))

Cohen's kappa

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Response

Cohen's Kappa Statistic

In class exercise

Take home exercise

library(psych) #rating data (with thanks to Tim Bates) rater1 <- c(1, 2, 3, 4, 5, 6, 7, 8, 9) # rater one's ratings rater2 <- c(1, 3, 1, 6, 1, 5, 5, 6, 7) # rater one's ratings</pre>

```
## Call: cohen.kappai(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries
## Lower estimate upper
## weighted kappa -0.18 0.00 0.18
## weighted kappa 0.43 0.68 0.93
##
Wuber of subjects = 9
# data matrix taken from Cohen
cohen <- matrix(c(0.44, 0.07, 0.09, 0.05, 0.2, 0.05, 0.01, 0.03, 0.06), ncol = 3, byrow = TRUE)
cohen.kappa(cohen, n.obs = 200)</pre>
```

```
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries
## Lover estimate upper
## wreighted kappa 0.39 0.49 0.59
## wreighted kappa 0.33 0.45 0.58
##
## Twnber of subjects = 200
```


In class exercise

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Response Cohen's Kappa Statistic

In class exercise

Take home exercise

Use the wcgs data and make ggplot but relax the proportional-odds assumption.

Take home exercise

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Response Cohen's Kappa Statistic

In class exercise

Take home exercise

- Use the wcgs data and make ggplot as in class with the proportional-odds assumption with interaction but substitute variable chd69 with arcus0.
- Agresti 6.8 and 6.20 using R.

Class over

Class 9: Chapter 6

Min Lu

Object:

Logit Models for Ordinal Responses Plot and Understand Model Specification

Cohen's Kappa Statistic

R Exercise

Logit Model for Ordinal Response Cohen's Kappa Statistic

In class exercise

Take home exercise

